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Abstract. The series representing the generalizations of classical James Gregory's series are 

discussed in this paper. Formulae describing sums of these series are found. A number 

of applications of obtained formulae are also presented, among others, in receiving 

the generalizations of Gregory-Leibniz-Nilakantha formula. Moreover, the sums of series 

of differences of odd harmonic numbers are generated. 
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Introduction 

James Gregory (1638-1675), Scottish mathematician, discovered the Taylor  

series more than forty years before Taylor published it. Also the Maclaurin series 

for tan	 �, sec	 �, arctan	 � and sec	 � were all known to him, but only the series for 
arctan	 � (1671): 

arctan	 � = � −
��
3

+
��
5

−
��
7

+ ⋯ ,  |�| ≤ 1, (1) 

is known as “Gregory’s series” [1]. This series, by applying it into formula �
4

= 4  arctan	1
5

− arctan	 1

239
, 

discovered in 1706 by English mathematician John Machin (1680-1752), made it 

possible to obtain the relation 

� =
16

5
 �1 −

4

3 ⋅ 100
+

4�

5 ⋅ 100�
−

4�

7 ⋅ 100�
+ ⋯�− 

−
4

239
 �1 −

1

3 ⋅ 57121
+

1

5 ⋅ 57121
− ⋯ � 
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used by Machin for numerical calculating the value of � (exact to one hundred deci- 
mal places) which broke the hegemony of the geometrical method of Archimedes 

used from ancient times for determining the approximations of number �. 
The aim of our paper is to give some generalizations of formula (1). We distin-

guish an infinite family of such generalizations and we present their various appli- 

cations, among others, in generating new formulae of numerical nature. In particular, 

we give the generalizations of the classic Gregory-Leibniz-Nilakantha formula [2]: 

�
4

= 1 −
1

3
+

1

5
−

1

7
+ ⋯ (2) 

and their applications for summation of series of differences of odd harmonic 

numbers. Formula (2) was historically the first formula in which � represented 
the sum of numerical series. 

The subject matter concerning the summation of the series was already an object 

of the authors’ interests, the effect of which is given in paper [3]. In this paper the 

Fourier series method, elementary trigonometric and the residue method were used. 

For a change, in the current paper we use only the simple calculus method and an 

elementary trigonometric one. It appears that in paper [3], as well as in the presented 

paper, apart from new results, relations and identities, there are discovered a lot of 

inexhaustible, still inspiring subjects which will certainly lead to prepare new works. 

1. Generalizations of Gregory’s formula 

We begin with determining the generalizations of Gregory alternating power 

series (right hand of (1)). Let us take 

��(�) = � −
��
3

+
��
5

−
��
7

+ ⋯, 

��(�) = � +
��
3

−
��
5

−
��
7

+
��
9

+
���
11

−
���
13

−
���
15

+ ⋯ 

and, in general 

��(�) = � +
��
3

+ ⋯ +
�����
2	 − 1

−
���	�
2	 + 1

−
���	�
2	 + 3

− ⋯ −
�
���
4	 − 1

+ 

+
�
�	�
4� + 1

+
�
�	�
4	 + 3

+ ⋯ +
�����
6	 − 1

−
���	�
6	 + 1

− ⋯ −
�����
8	 − 1

+ ⋯ 

 By using the possibility of integrating the power series (by treating every term 

separately) in the interval of convergence, we easily get the following relation for 

each � ∈ [−1,1]: 
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��(�) = 
(




�

1 + �� + ⋯ + ����� − ��� − ���	� − ⋯ − �
��� + �
� + �
�	� + ⋯ 

… + ����� − ��� − ⋯ − ����� + ��� + ⋯ )�� = 

= 
(




�

1 + �� + ⋯ + �����)(1 − ��� + �
� − ��� + ⋯ )�� = 

= 
 1 + �� + ⋯ + �����
1 + ���




�

�� = 
 1 − ���
(1 − ��)(1 + ���)




�

�� = 

for 	 = 1: 

= arctan	 �, (3) 

for 	 = 2: 

=
√2

2
�arctan(√2� − 1) + arctan	(√2� + 1)�, (4) 

for 	 = 3: 

=
1

3
arctan	 � −

2

3
arctan	 � ��� − 1

�, (5) 

for 	 = 4: 

=
√2

2
�cos	 �

8
�arctan �� csc	 �

8
− cot

π

8
�+ arctan �� csc	 �

8
	+ cot

π

8
��+ � 

�	+ sin	 �
8
�arctan ��	sec

�
8

− tan
π

8
�+ arctan ��sec

�
8

+ tan
π

8
���, 

(6) 

for 	 = 5: 

=
1

5
�arctan	 � + 4 cos	 2�

5
�arctan �� scs	 �

5
− tan

�
5
�+ arctan �� scs	 �

5
+ tan

�
5
��+ 	 

+ 	4 cos	 �
5
�arctan 
� scs	 2�

5
+ tan

2�
5
� + arctan 
� scs	2�

5
− tan

2�
5
��� = 

=
1

5
�arctan	 � + 
√5 − 1� �arctan�4� − �10 − 2√5√5 + 1

�	+ 	 
+ 	arctan�4� + �10 − 2√5√5 + 1

��+ 

	+
√5 + 1� �arctan�4� + �10 + 2√5√5 − 1
�+ arctan�4� − �10 + 2√5√5 − 1

���, 

(7)
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for 	 = 6: 

=
√2

6
�arctan�√2� + 1� + arctan�√2� − 1�+ � 

+�√3 + 1��arctan�2√2� − 1 − √3√3 − 1
�+ arctan�2√2� + 1 + √3√3 − 1

��+ 

+ ��√3 − 1� �arctan�2√2� + √3 − 1√3 + 1
�+ arctan�2√2� − √3 + 1√3 + 1

��� = 

=
1

3
 �����+

√2

6
��√3 + 1� �arctan�2√2� − 1 − √3√3 − 1

��+ � 
�+arctan�2√2� + 1 + √3√3 − 1

��+ 

+�√3 − 1� ��arctan�2√2� + √3 − 1√3 + 1
�+ arctan�2√2� − √3 + 1√3 + 1

���, 

(8) 

for 	 = 7: 

=
1

7
�arctan	 � + �1 + 2 cos	 �

7
− 2 sin	 �

14
− 2 sin	3�

14
� ×� 

× �arctan ��	sec
�
7

− tan
�
7
�+ arctan ��	sec

�
7

+ tan
�
7
��+ 

+ �−1 + 2 cos	 �
7

− 2 sin	 �
14

+ 2 sin	3�
14
� �arctan �� csc	3�

14
− cot

3�
14
�+ � �+arctan �� csc	3�

14
+ cot

3�
14
��+ 

+ �1 + 2 cos	 �
7

+ 2 sin	 �
14

+ 2 sin	3�
14
�× 

�× �arctan �� csc	 �
14

− cot
�

14
�+ arctan � ��� csc	 �

14
+ cot

�
14
���, 

(9) 

for 	 = 9: 
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=
2

9
�1

2
arctan	 � + arctan�2� + √3�+ arctan�2� − √3� + � 

+ �−1 + cos	 �
9

+ cos	2�
9

− sin	 �
18
� × 

× �arctan �� sec	 �
9

− tan	 �
9
�+ arctan �� sec	 �

9
+ tan	 �

9
��+ 

+ �1 − cos	 �
9

+ cos	2�
9

− sin	 �
18
� × 

× �arctan �� sec	2�
9

− tan	2�
9
�+ arctan �� sec	2�

9
+ tan	 2�

9
��+ 

+ �1 + cos	 �
9

+ cos	2�
9

+ sin	 �
18
� × 

× ��arctan �� csc	 �
18

− cot	 �
18
�+ arctan �� csc	 �

18
+ cot	 �

18
���. 

(10)

One can see that formulae for 	 = 1,2,3,6 are especially useful for computations. 
Formulae for 	 = 4,7,9 are of a more advanced trigonometrical nature, however 
they can be used for calculations as well. 

Remark 1. Let us notice that computing the values of arctan	 � for � > 1 can be 

always reduced to computing the values of arctan� for � ∈ (0,1), since the fol-
lowing identity [4]:  

1

2
arctan	 � = arctan	 √1 + �� − 1� ,   � > 0 

is satisfied. Moreover, if we take  

�(�) =
√1 + �� − 1� ,   � > 0, 

then �(�) <
�

�
� which implies that (��	�: = � ∘ ��, 	 = 1,2, …):  

lim
�→�

�� (�) = 0 

for every � > 0. Thus, for an appropriately quick computation of arctan	 � values, 

it is enough to apply Gregory’s formula for arctan	( ��(�)) for sufficiently big 

numbers � ∈ ℕ, since  

arctan	 � = 2�arctan�������,   � > 0. 
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For example 

arctan	3
4

= 2 arctan	1
3

= 4 arctan	 1√10 + 3
= ⋯ (11)

Of course, it does not mean that the other formulae, given above, cannot be used. 

Quite the contrary, and, what is essential, the other formulae can give even better 

convergence. 

2. Review of applications of formulae (3)-(10) 

We present only the list of selected relations: 

a) ���1� =
√2

2
�arctan�√2 − 1�+ arctan�√2 + 1�� = 

	= lim

→��

√2

2
�arctan�√2	� − 1� + arctan�√2	� + 1�� = 

	= lim

→��

√2

2
�arctan	 2√2�

1 − �2�� − 1�� = 

		= lim

→��

√2

2
arctan� √2�

1 − ��� =
√2

2
arctan	( ∞) =

√2

4
�, 

that is 

arctan	(√2 − 1) + arctan	(√2 + 1) =
�
2

, 

which is a special case of the known formula [2]: 

arctan � + arctan
1� =

�
2

sgn���,				� ∈ ℝ\{0}. 

b) 

 �� �√2

2
� =

√2

2
arctan	2 

which implies the equality 

arctan	2 = �(

�

���

− 1)�4�� � 1

4� + 1
+

1

2�4� + 3��. 

From this and from Gregory’s formula for � =
�

�
 and from the equality, which is 

easy to verify [4]: 
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2 arctan	2 − arctan	3
4

=
�
2

, 

i.e., by (11) 

arctan	2 − arctan	1
3

=
�
4

, (12)

we get two series, both of geometrical rate of convergence, linear combination 

of which approximates �. 
c) ��(1) =

�
12

−
2

3
arctan	( − ∞) =

�
12

−
2

3
�−
�
2
� =

5

12
�, 

which implies the equality 

� =
12

5
�(

�

���

− 1)��� � 1

6� − 5
+

1

6� − 3
+

1

6� − 1
�. (13)

Unfortunately, this alternating series is rather slowly convergent. 

d) �� �√3

3
� =

1

3
arctan	 √3

3
+

2

3
arctan	 √3

2
=
�

18
+

2

3
arctan	 √3

2
 

which implies 

�
6

+ 2 arctan	 √3

2
= 3√3�(

�

���

− 1)���27�� � 9

6� − 5
+

1

2� − 1
+

1

6� − 1
�. (14)

We also have 

�� �√		 � =
1

3
arctan	 √		 +

2

3
arctan	 √		 − 1

, 

which implies 

arctan	 √		 + 2 arctan	 √		 − 1
= 

= 3√	�(

�

���

− 1)���	��� � 	�
6� − 5

+
	

6� − 3
+

1

6� − 1
�. 

(15)
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From this, by applying Gregory’s series for arctan	 �
�
, � > 1, we can also com-

pute the value of arctan	 �

����
 in the convergence rate of geometrical series. 

Moreover, let us notice a curious detail - from equality [4]:  

arctan	1
2

+ arctan	1
3

+ arctan	2
3

= arctan	5, 

by applying formula (15) for 	 = 4 and by using Gregory’s formula twice for � =
�

�
 and � =

�

�
, we can calculate arctan 5 in the convergence rate of geometri-

cal series. 

e) �� �√2

2
� =

1

3
arctan	 √2

2
+

2

3
arctan	 √2, 

which implies 

arctan	 √2

2
+ 2 arctan	 √2 = √2�(

�

���

− 1)���8�� � 12

6� − 5
+

2

2� − 1
+

3

6� − 1
�. 

f) 

�� �√2
2
� =

√2
6

�arctan 2 + 
√3 + 1� �arctan�−1� + arctan�3 + √3√3 − 1
��	+ 

+
√3 − 1� 	�arctan	( 1) + arctan�3 − √3√3 + 1
��� = 

=
√2
6

�−�
2
+ arctan	( 2) + 
√3 + 1�	arctan�3 + √3√3 − 1

�	 		+
√3 − 1�	arctan�3 − √3√3 + 1
��, 

hence, by applying the formulae for a sum and difference of arctangents, the 

equality, given below, follows 

1

3
��√3 −

1

2
� � + arctan �3

2
�+ arctan	( 2) − √3	arctan�2√3�� = 

= � (−1)�

2��

�

���

� 1

12� + 1
+

1

2(12� + 3)
+

1

2�(12� + 5)
+ � 

�+ 1

2�(12� + 7)
+

1

2
(12� + 9)
+

1

2�(12� + 11)
�. 

(16)
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g) �
 �sin	 �
8
� =

√2

2
�sin	 �

8
arctan �2�√2 − 1��+ � 

	�+ cos	 �
8
�arctan�2 + √2� − arctan�√2��� = 

		= √2

2
�sin	 �

8
arctan �2�√2 − 1��+ cos	 �

8
arctan � 2

3 + 2√2
�� 

which implies the equality √2

2
�arctan �2�√2 − 1�� + �√2 + 1�arctan �2�3 − 2√2��� = 

= �(

�

���

− 1)�
(2 − √2)
�

2��
� 1

8� + 1
+
�2 − √2�

2��8� + 3�+ � 
�+ (2 − √2)�

2
�8� + 5�+
(2 − √2)�

2��8� + 7��. 

(17)

Similarly we get 

�� �cos	 �
8
� =

√2
2

�cos	 �
8
arctan �2
√2 + 1�� 	+sin	 �

8
�arctan
2 − √2� + arctan
√2��� = 	 

=
√2
2

�cos	 �
8
arctan �2
√2 + 1�� + sin	 �

8
arctan �2
3 + 2√2���, 

from where we generate the formula in a way “conjugated” with the previous 

one √2

2
�arctan �2�√2 + 1�� + �√2 − 1�arctan �2�3 + 2√2��� = 

= �(

�

���

− 1)�
(2 + √2)
�

2��
� 1

8� + 1
+
�2 + √2�

2��8� + 3�+ � 
+ � (2 + √2)�

2
(8� + 5)
+

(2 + √2)�

2�(8� + 7)
�. 

(18)

In both the last cases we used formulae [5, problem 1.19]: 

sin	 �
8

=
1

2
�2 − √2, cos	 �

8
=

1

2
�2 + √2, cos	 �

8
± sin	 �

8
= �2 ± √2

2
,

tan	 �
8

= √2 − 1,  1 − cot	 �
8

= −√2,  1 + cot
�
8

= 2 + √2,

arctan	 � − arctan	 � = arctan	 � − �
1 + �� ,   whenever �� > −1.

 
(19)
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Remark 2.  In Mathematica software the sums of series (16), (17) are presented 

with the use of hypergeometric functions which is much less attractive from the 

visually-technical point of view. 

h) 

�� �cos	 �
5
� =

1

5
��√5 + 1		arctan 
1 +

1√5�� �	+	�√5 − 1		arctan 
2 +
4√5� + arctan
1 + √5

4
�� = 

= �(

�

���

− 1)� �1 + √5
4

����	� � 1

10� + 1
+

1

10� + 3
�1 + √5

4
�
 	 + 

	+ 1

10� + 5
�1 + √5

4
��

+
1

10� + 7
�1 + √5

4
��

+
1

10� + 9
�1 + √5

4
��� 

in which we used relation [5, problem 1.18]: 

cos	 �
5

=
1 + √5

4
   ⇒    sin	 �

5
=
 10 − 2√5

4
,

cos	2�
5

=
√5 − 1

4
   ⇒    sin	2�

5
=
 10 + 2√5

4
.

 (20)

3. Generalizations of the Gregory-Leibniz-Nilakantha formula 

For series (3)-(10) obtained in Section 1 one can apply the Abel’s Limit Theorem 

for power series [6, 7]. As a result, we get the set of attractive formulae generalizing 

formula (2). For example, from  !) we get 

1

4
√2� = �(

�

���

− 1)� � 1

4� + 1
+

1

4� + 3
�. 

We also receive 

3��(1) = lim

→��

�arctan	 � − 2 arctan	 ��� − 1
� =

�
2

+ � =
3

2
�, 

i.e., �
2

= �(

�

���

− 1)� � 1

6� + 1
+

1

6� + 3
+

1

6� + 5
�. (21)

The next formulae are based on the following auxiliary relations 

lim

→��

�arctan�� csc	 " − cot	 "�+ arctan�� csc	 " + cot	 "�� = 

= lim

→��

arctan	 2� csc	 "
1 − �� csc

�

+ cot
� " = lim


→��
arctan	2� sin	 "

1 − �� =
�
2

,					" ∈ (0,�) 
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and 

lim

→��

�arctan�� sec	 " − tan	 "�+ arctan�� sec	 " + tan	 "�� = 

= lim
�→��

�arctan��	csc ��
2
− ��− cot ��

2
− ���+	 	arctan��	csc ��

2
− ��+ cot ��

2
− ���� = 

= lim
�→��

arctan	 2� cos	 �
1 − �


=
�
2
, � ∈ (−

�
2
,
�
2
). 

Hence, from (6) we deduce 

�
(1) =
√2

2
�cos	 �

8
⋅
�
2

+ sin	 �
8

⋅
�
2
� =

√2�
4
�cos	 �

8
+ sin	 �

8
� = 

# √2�
8

(��) ��2 − √2 +�2 + √2� =
�
4
�2 + √2 

which implies 

�
4
�2 + √2 = �(

�

���

− 1)� � 1

8� + 1
+

1

8� + 3
+

1

8� + 5
+

1

8� + 7
�. (22)

Whereas, from (7) we obtain 

5���1� =
�
4

+ 4 cos	2�
5

⋅
�
2

+ 4 cos	 �
5

⋅
�
2

= 2� �1

8
+ cos	 �

5
+ cos	2�

5
� = 

# 2
(��) � �1

8
+
√5

2
� = � �1

4
+ √5�, 

which implies 

�
5
�1

4
+ √5� = �(

�

���

− 1)� �� 1

10� + 2$ − 1

�

���

� = 

= �(

�

���

− 1)��%���	�

∗ −%�����

∗ �, (23)

where %����

∗  denotes the �-th odd harmonic number announced in the Introduction 
%����

∗ ∶=� 1

2& − 1

�

���

,			� = 1,2, … 

From (8) we get 

3√2���1� =
√2

4
� + √3� = �√2

4
+ √3��, 
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i.e., �
6
�1

2
+ √6� = �(

�

���

− 1)�(%���	��

∗ −%�����

∗ ). (24)

From (9) we obtain  

7��(1) =
�
4

+
�
2
�1 + 6 cos	 �

7
− 2 sin	 �

14
+ 2 sin	3�

14
� 

which gives us the “beautiful” formula 

�
7
�3

4
+ 3 cos	 �

7
− sin	 �

14
+ sin	3�

14
� = �(

�

���

− 1)�(%�
�	��

∗ −%�
���

∗ ). (25)

At last, from (10) we receive 

9

2
��(1) =

�
8

+
�
2
�2 + cos	 �

9
+ 3 cos	2�

9
− sin	 �

18
�. 

Hence, the next our “lovely” formula follows 

�
9
�9

4
+ cos	 �

9
+ 3 cos	2�

9
− sin	 �

18
� = �(

�

���

− 1)�(%���	��

∗ −%�����

∗ ). (26)

Remark 3. Numbers cos	 �
�

,	 sin	 �
�


= cos	 ��
�
, sin	 ��

�

= cos	 ��

�
 from (25) are line-

arly independent over ℚ. Similarly, numbers cos	 �
�
, cos	 ��

�
 and sin	 �

��
= cos	 
�

�
 

are also linearly independent over ℚ. In both cases, with regard to the appropriate 

trigonometric identities, it means that the rational linear combinations of these num- 

bers cannot be rational numbers either. In this connection, it seems to be unlikely to 

reduce the number of sums of components on the left sides of formulae (25) and (26). 

 

Final comments. Additional historical remarks concerning Gregory can be 

found in [8]. Formulae related to the sums of series, presented in this paper, were 

verified with [6], [9], [10] and [11]. The greater part of these formulae seems to be 

original, especially original is the method of generating the discussed formulae. 
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