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Abstract. The estimation of priority vectors from pairwise comparison matrices is a core of 

the Analytic Hierarchy Process. Perhaps the most popular approach for deriving the priority 

weights is the right eigenvalue method (EM). Despite its popularity, various shortcomings 

of the EM have been described in literature. In this paper a new method for deriving 

priority vectors is proposed. This method makes use of the idea underlying the EM but in 

difference to the latter, the new one is optimization based. Important features of this new 

technique are studied via computer simulations and illustrated by some numerical 

examples. 
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Introduction 

In the AHP, pairwise comparisons of various alternatives are performed by the 

decision-maker (DM) and then the pairwise comparison matrix (PCM) is built. The 

elements of the matrix represent the DM judgments about the values of the priority 

ratios. Priority weights - assigned to each alternative and/or criterion - measure 

their relative importance. The weights form a so-called priority vector (PV).  

Generating PVs from the PCMs is the core of the AHP. In the early 1980s Saaty 

[1] suggested the right eigenvalue prioritization method (EM), that became the 

most popular method for deriving priority weights. During the last decades several 

other prioritization methods have been proposed in literature. However, each 

known method has its advantages and disadvantages. One can find in literature 

a number of papers devoted to comparative studies of various prioritization 

methods, [2-8]. Despite its popularity, the EM also has its share of criticism, see 

[4, 6, 9-11]. Some of its shortcomings will be addressed later on in more details. 

This study proposes a new approach for deriving PVs. The basic concept is to 

combine Saaty’s idea with some optimization procedures. As a result, we obtain 

estimation procedures which do not suffer from the above-mentioned EM’s 

drawbacks and, moreover, provide us with naturally meaningful indicators of 

inconsistency of the PCMs. 
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In the following section we state the prioritization problem formally. Next, in 

Section 2, the main prioritization approaches are briefly described. In Section 3 we 

introduce our proposals for deriving PVs. Section 4 presents the results of the 

simulation studies of the performance of the introduced methods as well as some 

numerical examples illustrating the advantages resulting from our approach. 

In Section 5 a problem connected with the COP is addressed. 

1. Formal statement of the prioritization problem 

A problem of deriving priority weights from PCM is to estimate a PV 

w = (w1,…,wn) on the base of the matrix A = [aij]nxn. Usually, the priority weights 

wi,i = 1,…,n, are chosen to be positive and normalized to unity: 1=∑
n

i i
w . The 

elements aij of the matrix A are the DM judgments about the priority ratios wi/wj , 

i,j = 1,…,n. The judgments are usually expressed in linguistic terms and then trans-

formed into an appropriate numeric scale. A given PCM is said to be reciprocal 

(RPCM) if aij = 1/aji. PCM is called consistent if it is reciprocal and its elements 

satisfy the condition: aijajk = aik for all i, j, k = 1,…,n. It is proved that a necessary 

and sufficient condition for a positive matrix A to be consistent is an existence of 

a unique PV w satisfying aij = wi/wj for i,j = 1,…,n. PCM is said to be (ordinally) 

transitive if the following condition holds: (A) if for any l = 1,…,n element alj 

is not less than alk then aij ≥ aik for i = 1,…,n and (B) if for any l = 1,…,n element ajl 

is not less than akl then aji ≥ aki for i = 1,…,n. 

It is obvious that in reality it cannot be expected that the elements of PCM give 

exact priority ratios. The evaluations of the ratios may depend on personal taste, 

experience, changes in one’s knowledge, and may vary in time. One cannot also 

neglect rounding errors which can be quite big if we use discrete numeric scale, 

especially if it offers only a few values for consideration. Therefore in reality the 

PCM is typically inconsistent. Then the relation between the PCM elements and 

the priority weights can be expressed in the form 

 
j

i
ijij
w

w

a ε=  (1) 

where εij is a perturbation factor which is expected to be near 1, [2, 12, 13]. In the 

statistical approach and in various simulation studies the perturbation factor is 

interpreted as realization of a random variable. 

In conventional AHP, the elements of PCM are collected only for the upper 

triangle of the matrix A, and the remaining elements are computed as the inverse 

of the corresponding symmetric elements in the upper triangle that ensures the 

reciprocity of the PCM. This method of data collection artificially forces some 

consistency of judgments which is not always natural, see e.g. [2, 6, 10, 11]. Some 

authors argue that enforcing this kind of consistency on the input data creates 
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unnecessary dependency among observations and loses additional information 

contained perhaps in the elements of the lower triangle of A which may lead to 

poorer estimates of the priorities. 

2. Prioritization methods discussed in literature 

Choo et al. [2] discussed and compared 18 methods which may be used for  

deriving priority weights. These methods are derived from different concepts of the 

estimation quality criteria and under different assumptions about the perturbation 

factor structure. Except for the EM, most prioritization methods are optimization 

based. Such methods may assume a different criterion function and, consequently, 

result in different prioritization estimates. Among them the most popular is the 

logarithmic least squares method (also known as geometric mean method - GM) 

[3, 4, 9]. Imposing the normalization condition 1

1

=∑
=

n

i

iw , the weights in GM can 

be estimated from the following formula: 
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 As it was already pointed out, the most commonly used prioritization method is 

the EM. This method is not optimization based. Let us describe the idea underlying 

EM in more detail. In a perfect judgment case, where there are no perturbations 

(εij = 1) we have 

 Aw = nw (3) 

Thus in this case the PV w can be calculated by solving the eigenvector equation 

(3). It turns out that for a consistent matrix A the number n is the principal eigen-

value of A, i.e. the largest solution of the characteristic equation: det(A- λI) = 0. 

It is also the only nonzero eigenvalue in this case. The relation (3) plays the main 

role in Saaty’s approach. In the case where the matrix A is perturbed, the Saaty 

proposal is to use the normalized right eigenvector associated with the largest 

eigenvalue as an estimate of the true priority vector. Hence, to obtain the estimate 

we need to solve the general eigenvector equation 

 Aw = λmaxw (4) 

where λmax is the principal eigenvalue. For an arbitrary positive reciprocal matrix 

A the value λmax is always real, unique and not smaller than n. 

Apart from deriving priority vectors, another very important problem is how to 

measure the degree of inconsistence of the PCM. It is obvious that the significant 

violations of the consistency makes the inference useless (or at least questionable). 
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In practice the only widely accepted rule of inconsistency measuring is due to 

Saaty and is closely related to EM. According to this concept the index CI(n) is 

given in the following form: 

 
1

)(CI max

−

−

=

n

n

n

λ
 (5) 

The justification of the formula (5) as well as a more detailed description of the 

approach to consistency measuring can be found in various articles, see e.g. [1, 6, 

12]. However the index can hardly be interpreted in any intuitive way and is more 

and more often criticised and new indices which can be used for this purpose are 

proposed in literature, see [6, 14]. What is more, the index CI(n) is useful only for 

RPCM and even then it can be very misleading, see e.g. [6] and references therein. 

Although the EM has attracted much attention, especially in practical application, 

it has also been criticized in literature for several different reasons. In particular, 

some authors have pointed out that Saaty’s procedure does not optimize any 

performance criterion. Thus it cannot be interpreted in statistical or optimization 

fashion and it is difficult to compare resulting PVs with the ones obtained with 

the help of other methods, see e.g. [3, 4, 9]. Moreover, unlike many optimization 

models, EM does not allow DM to introduce any additional constraints for the 

priority vector which, according to decision-maker opinions, should be satisfied by 

the weights, [6]. 

Another drawback of this method is that it should be used only for the so-called 

reciprocal PCMs, and as such it has a limited range of application. In real-world 

problems the reciprocity condition is artificially enforced by Saaty’s method, and 

many authors argue that it would be much better if the DM would make all com- 

parisons because then the PCM would contain more information about the unknown 

priority vector, see e.g. [3, 6, 10, 11]. In the sequel a new prioritization method 

which does not suffer from these drawbacks is introduced. The performance of 

the new method will be compared with the performance of the most frequently 

recommend and used in AHP practice methods- the EM and GM, see [4, 8]. 

3. Proposal of a new prioritization method 

In this proposal an idea of deriving the weights based on the relation (3) is 

adopted. However, in a new approach proposed in [5, 6], instead of solving 

the eigenvalue equation (4) one looks for a vector w which best approximates the 

relation (3), i.e. a vector for which  

 Aw ≅ nw (6) 

Consequently, as an estimate of the DM priorities, a vector w is used, which is 

a solution to the following optimization problem: 
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 ),(min wAw nD  (7) 

subject to 0,1
1

>=∑
=

i

n

i

i ww , i=1,…,n. The function D in (7) measures a distance 

between the vectors appearing on the right and left hand side of the relation (6). 

Let d = (d1,…,dn)
T
 = Aw−nw. There are various distance measures that can be 

used in () to derive the priorities. Some of them were discussed in [6] and [7]. Here 

we consider one of the most widely accepted distance measures, which appears in 

various optimization models. It is the sum of squared deviations ∑
=

n

i

id

1

2 . This meas- 

ure leads to a prioritization method, which will be called in the sequel least 

squared deviation approximation (LSDA). To obtain the PV in this approach one 

needs to solve the following quadratic programming problem 

 Bwww
T
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i

1,0 =>        C2.   

in the above model B = [(A−nI)
T
(A−nI)] with I being an identity matrix of order n.  

It is easy to see that if the matrix A is inconsistent then the matrix B is nonsin-

gular. In such a case we can find a closed-form formula for a vector wLS minimiz-

ing (8) and satisfying the constraint C1. Using well-known solutions for minimiz-

ing a quadratic form under linear constraints, the following formula can be derived 

 )(/ 1T1
eBeeBw
−−

=
LS

 (9) 

where e = (1,…,1)
T
 is a column vector with all elements equal to 1. Obviously, the 

vector given by (9) does not have to satisfy the positivity constraint C2. However, 

it is rarely the case if the PCM is both transitive and reciprocal. We have generated 

randomly 10 000 such matrices (each of random order drawn from the interval 

[4, 12]) and found only 16 examples when the vectors given by (9) have some 

negative coefficients. It is only 0.16% of all generated PCMs. The analogous  

percentage computed for PCMs which were transitive and nonreciprocal is greater 

and amounts to 12.7% while in the case of reciprocal and nontransitive PCMs the 

percentage equals 59.7% Obviously, in all such cases, we can use computer soft-

ware to solve the minimization problem (8) numerically. One may notice that 

nowadays very efficient computer software is available for minimizing the quad-

ratic form (8) under linear constraints of the type C1 and C2. 

The existence of the closed-form formula (9) that allows to derive priorities in 

many practical problems is a very appealing future of the proposed method. It also 

has another important feature - easily interpretable consistency index. Let the 



A.Z. Grzybowski 38 

minimum of (8) subject to constraints C1 and C2 be denoted as MSSD. Its value 

can be considered as an inconsistency measure. In a consistent case MSSD equals 

0. For inconsistent PCMs the index takes positive values. It is easy to note that the 

sum of the coefficients of the vector standing on the right hand side of the relation 

(6) is equal to n. Thus, if we divide MSSD by n, and take the square root of the 

result, then we obtain an index of inconsistency n/MSSDIILS = . The value of 

IILS can be compared with 1, the total sum of priority weights. Roughly speaking, 

the value tells us what part of the total mass of weights has to be changed (added or 

subtracted dependently on the coefficient) to achieve equality in the formula (6). 

Unlike the EM, the proposed prioritization method and resulting inconsistency 

index can be applied to any type of PCM and thus provide us with a tool for deal-

ing with nonreciprocal PCMs. It is well known that in the case of nonreciprocal 

PCMs the index CI may take negative values. In such a case CI has no interpreta-

tion. In the next section we present an example of such a situation. 

4. Methods comparison via computer simulation - results and examples 

In this section we present some examples illustrating the usefulness of the pro-

posed method as well as results of simulation comparison of the LSDA with EM 

and GM, the most popular and recommended methods, see [4, 8]. To compare the 

accuracy of the estimates obtained by the considered methods we simulate various 

situations related to various sources of the inconsistency of PCM. In the simula-

tions we assume, similarly as in e.g. [4, 8, 13], that we know the true PV. Next we 

generate an inconsistent PCM related to the known PV. The inconsistence is 

a result of various types of errors and/or perturbation factors. In literature various 

sources of inconsistence of the PCMs were named. The sources can be divided into 

two groups: errors resulting from the nature of human judgments and errors result-

ing from the technical realization of the comparison procedure. The errors from the 

second group are mainly the rounding errors and errors resulting from the forced 

reciprocity. The presence of the rounding errors is connected with the numerical 

ratio scale, whose values should be used by the DM to express its judgments, see 

e.g. [11, 12]. In conventional AHP the most popular is Saaty numerical scale which 

consists of the integers 1 to 9 and their reciprocals. Possible problems resulting 

from the rounding errors illustrate the following example. 

Example 1. Let the true PV be as follows: w = (0.691, 0.173, 0.126, 0.010)
T
. 

Then the approximated PCM (in the sequel denoted as APCM) containing the 

numbers from the Saaty scale which are the closest to the elements of the true ratio 

matrix is: 


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It is worth noticing, that due to the rounding errors only, a nonreciprocal PCM 

is obtained. Indeed, for example the ratio w1/w3 equals 5.484 and the closest value 

taken from the ratio scale is 5, but the ratio w3/w1 equals 0.182 and the closest 

value from the scale is 1/6. Now, let us estimate the PV using the EM, GM and 

LSDA. We compare the results with the true PV. In these comparisons we use  

performance measures known from literature, see e.g. [2, 4, 8, 13]: the Pearson 

correlation coefficient r between the estimated and true vectors, the Spearman rank 

correlation coefficient ρ, mean absolute deviation (MAD) and root-mean-square-

deviation (RMS). The two latter measures are given by the following formulae: 

 ∑
=

−=

n

i

ii ww

n 1
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n

i
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n 1
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The results of the comparison are presented in Table 1. One can see that in this 

case the new method performs slightly better than the two others. 

Table 1 

Comparison of EM, GM and LSDA. Performance for rounding errors - Example 1 

method estimate r ρ MAD RMS 

EM (0.6067, 0.1976, 0.1615, 0.0342)T 0.9982 1 0.0422 0.0489 

GM (0.6158, 0.1955, 0.1582, 0.0305)T 0.9980 1 0.0408 0.0472 

LSDA (0.6158, 0.1954, 0.1581, 0.0307)T 0.9985 1 0.0376 0.0436 

 

Now let us address the problem of forced reciprocity. According to the conven-

tional AHP setup, the elements of the lower triangle of the PCM should be com-

puted as reciprocals of the appropriate elements from the upper triangle. Thus, in 

our example, the elements a31 and a32 should be changed to 1/5 and 1, respectively. 

Results obtained for such a PCM are presented in Table 2.  

Table 2 

Comparison of EM, GM and LSDA. Performance for rounding errors and forced 

reciprocity - Example 1 

method estimate r ρ MAD RMS 

EM (0.5955, 0.1894, 0.1825, 0.0326)T 0.9951 1 0.0478 0.0572 

GM (0.6143, 0.1843, 0.1767, 0.0247)T 0.9935 1 0.0519 0.0619 

LSDA (0.6144, 0.1841, 0.1763, 0.0252)T 0.9961 1 0.0383 0.0468 

 

We see that the performance of all considered methods are now poorer than 

in the nonreciprocal case. It can also be observed in Tables 1 and 2 that the LSDA 
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outperforms the other two methods with respect to all criteria. One may say that it 

is just an example and in other situations the ranking of the methods may be differ-

ent. It appears, however, that the phenomena and relations observed in Example 1 

are typical. In our studies we simulate a thousand such problems. In each case 

the number of alternatives n is drawn from the set {4,…,12} and then a random PV 

is generated for which we compute all performance characteristics described 

in Example 1. Table 3. presents the average results for PCMs with the rounding 

errors only (APCM) and for PCMs with rounding errors and forced reciprocity  

(FR-APCM). 

Table 3 

Comparison of EM, GM and LSDA. Performance for PCMs with rounding errors 

- average results for 1000 random PV 

  APCM     FR-APCM  

method r ρ MAD RMS   r ρ MAD RMS 

EM 0.979 0.997 0.0120 0.0090   0.980 0.996 0.0136 0.0100 

GM 0.978 0.996 0.0129 0.0095   0.980 0.995 0.0146 0.0106 

LSDA 0.976 0.997 0.0114 0.0086   0.980 0.996 0.0123 0.0091 

 

Now let us consider the errors resulting from the nature of human judgments. 

They are often treated as realization of random variables and are commonly repre-

sented in the form (1), see e.g. [2, 6, 14]. Probability distributions (p.d.) of the per-

turbation factor εij mainly involve gamma, log-normal and uniform ones, [6, 13]. 

Following [4, 8] we consider three comparison frameworks that will be denoted 

CF1,CF2, and CF3. In CF1 the PCMs contain many small errors. In our simulations 

small error εij , see (1), has p.d. that is uniform on the interval [0.8, 1.2]. In the 

second comparison framework, the PCMs contain many small and one large error, 

in CF3 the PCMs contain many large errors. Large errors εij are generated according 

the p.d. having uniform distribution on the interval [0.2, 1.8]. 

Although we adopt the comparison approach described in [4, 8] we propose 

some changes. First, the simulations described in [4, 8] are based only on one  

priority vector. Moreover, the vector is not normalized and thus the observed aver-

age errors cannot be compared with errors corresponding to other vectors having 

different dimensions and priority values. To make the results more representative 

in our simulation we use 30 random normalized vectors having random dimen-

sions. The dimension of each random vector is drawn from the set {4,...,12}. For 

each vector we generate 250 randomly disturbed PCMs with the perturbation factor 

having the p.d. dependent on the comparison framework, as described above.  

Similarly as in Example 1, we consider two types of approximation: with and with-

out forced reciprocity. Next the performance measures are computed. 

Another difference is that in our studies we also take into account the rounding 

errors. Therefore the randomly disturbed ratios are rounded to the closest values 
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from Saaty's scale. Such simulation framework seems to be more realistic, because 

in the AHP procedure DM is always expected to express his/her opinions in a given 

scale. Table 4 presents the average results obtained in these studies. 

 Table 4 

Comparison of EM, GM and LSDA under simulation frameworks CF1, CF2 and CF3 

CF1 - average results for 30 random PVs 

APCM FR-APCM 

method r ρ MAD RMS   r ρ MAD RMS 

EM 0.972 0.932 0.0264 0.0203   0.993 0.973 0.0372 0.0284 

GM 0.966 0.922 0.0292 0.0225   0.991 0.973 0.0370 0.0283 

LSDA 0.971 0.930 0.0266 0.0204   0.993 0.973 0.0369 0.0283 

CF2 - average results for 30 random PVs 

EM 0.990 0.951 0.0225 0.0166   0.988 0.944 0.0243 0.0178 

GM 0.986 0.954 0.0239 0.0187   0.986 0.945 0.0259 0.0187 

LSDA 0.989 0.951 0.0214 0.0157   0.988 0.944 0.0224 0.0165 

CF3 - average results for 30 random PVs 

EM 0.977 0.945 0.0239 0.0180   0.948 0.923 0.0337 0.0248 

GM 0.971 0.938 0.0266 0.0200   0.949 0.927 0.0341 0.0249 

LSDA 0.977 0.944 0.0237 0.0179   0.948 0.923 0.0325 0.0243 

 

All the presented results confirm that the methods EM, GM, and LSDA perform 

very similarly. However the LSDA seems to be the best method with respect to the 

values of average errors, both MAD and RMS. Taking into account these criteria, 

it demonstrates the best performance under 5 out of 6 simulation frameworks. 

In Table 4, another interesting observation can be made. All considered methods 

perform significantly better in the case of the nonreciprocal matrices. This fact 

indicates the importance of making use of the nonreciprocal PCMs in AHP. In such 

a case, however, the Saaty’s inconsistency index may be uninterpretable even 

in the case of slightly inconsistent PCMs resulting e.g. from the rounding errors. 

The problem is illustrated by the example below. 

Example 2. Let the PCM be as follows: 


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We see that a31≠1/a13 and a32≠1/a23. However the PCM can hardly be con-

sidered as seriously inconsistent because, as we have already seen such perturba-

tions can be observed even in the case of perfect judgments and may appear simply 
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due to rounding errors. Indeed, if for example, the true ratios are w1/w3 = 5.49, and 

w2/w3 = 3.45 then the APCM will have values of the related elements as in our 

example. But, in this case, the Saaty inconsistency index CI equals –0.017 and, as 

negative, is uninterpretable, and that is why nonreciprocal PCMs are forbidden in 

conventional AHP. As we can see from the above simulation results, forced recip-

rocity often leads to the loss of quality of the resulting estimates. To avoid this 

drawback, one may use LSDA and the related index of inconsistency. In this case 

the index IILS is equal to 0.002, and its small value indicates good consistency of 

the PCM. Roughly speaking, only less than 0.2% of the total mass of weights 

should be modified (added to or subtracted from the coefficients of the vector) to 

achieve the equality in (6). Indeed, based on such intuition, one may say that the 

inconsistency is not significant. However, in real world applications of the AHP, 

the DM needs a more precise and better justified threshold value which separates 

the acceptable judgment PCMs, and PCMs that should be rejected as "randomly 

generated". To obtain such thresholds, following Saaty's approach, let us study the 

empirical distribution of the values of IILS computed for random PCMs. This 

random index will be denoted by RII. Table 5 presents the statistical characteristics 

of empirical distributions obtained for RII generated for reciprocal PCM.  

Table 5 

Statistical characteristics of empirical distributions of RII(n) obtained for random 

reciprocal PCMs. For each number of alternatives n results are based on 10 000 

random reciprocal PCMs 

Empirical 

distribution 

characteristics 

number of alternatives n 

  n=4 n=5 n=6 n=7 n=8 n=9 n=10 

Mean (MRII) 0.239 0.282 0.307 0.320 0.325 0.321 0.323 

p-Quantiles 

p=.01 0.008 0.018 0.041 0.055 0.100 0.107 0.150 

p=.05 0.015 0.032 0.074 0.119 0.148 0.166 0.203 

p=.10 0.024 0.053 0.106 0.151 0.187 0.206 0.226 

p=.15 0.030 0.081 0.137 0.186 0.211 0.228 0.241 

 

However, the reciprocity is usually forced artificially, whilst the most traditional 

definition to characterize the consistency of PCMs is to use transitivity (see e.g. 

[10] and references in there) and intransitivity is prohibited by most theories. Thus 

in Table 6 results related to random PCMs with forced transitivity are also 

presented. 

Adopting Saaty's approach for inference based on the new index, one may treat 

a given PCM as consistent enough if IILS(n)< tα(n), with tα(n) = α MRII(n), for 

some prescribed consistency level α. On the other hand, one may prefer to adopt 

the conventional statistical approach, and select a proper quantile of the empirical 

distribution of the corresponding RII. The order p of the quantile should reflect the 
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attitude of the DM towards the probability of accepting random PCM as a consis-

tent one and may be interpreted as the required consistency level. 

Table 6 

Statistical characteristics of empirical distributions of RII(n) obtained for random 

transitive PCMs. For each number of alternatives n results are based on 10 000 

random transitive PCMs 

Empirical 

distribution 

characteristics 

number of alternatives n 

  n=4 n=5 n=6 n=7 n=8 n=9 n=10 

Mean  (MRII) 0.055 0.040 0.029 0.026 0.022 0.018 0.016 

p-Quantiles 

p=.01 .0007 .0006 .0006 .0005 .0003 .0002 .0002 

p=.05 .0046 .0029 .0024 .0021 .0017 .0015 .0012 

p=.10 .0086 .0060 .0046 .0041 .0034 .0031 .0027 

p=.15 .0135 .0088 .0067 .0061 .0050 .0043 .0040 

 

For instance, let us consider Example 2. The PCM is transitive. It is well-known 

that very often DMs, based on their experience, assume that their judgments should 

be transitive and the transitivity is usually "forced" by the DM personal beliefs. 

Thus one may assume that it was filled in as such. Consequently, we should com-

pare the index of inconsistency with the quantiles given in Table 6. If we assume 

the required consistency level equal to p = 0.05, then the matrix from this example 

can be considered as the consistent one because ICS for this matrix equals 0.002 

and the value is significantly less than 0.0046 - the quantile of order p = 0.05 

related to empirical distribution of RII(4). A more thorough discussion of the prob-

lem can be found in [6]. 

Final remarks 

The approach proposed in this paper provides DM not only with a relatively 

simple prioritization technique, but also with intuitive and easily computable  

inconsistency indices. The simulation results described in Section 4 show that the 

new method, the LSDA, demonstrates similar or even better performance than EM 

or GM. However the advantage of the LSDA is that it can be used for both recipro-

cal and nonreciprocal PCMs because the related inconsistency index is naturally 

meaningful for all types of PCMs. As a optimization based technique the LSDA 

also allows the DM to implement various other conditions which, according to 

his/her opinions, should be satisfied by the weights. Such additional constraints 

based on a prior knowledge or resulting from the DM requirements can be easily 

included in the LSDA but not in the EM. An additional advantage of the LSDA is 

the simple closed-form formula (9) which can be often used for computing the PV. 
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