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Abstract. The main task of this research work is applying techniques of wavelet analysis in 

spectral analysis of stationary random processes. The algorithm of calculation obtained for 

the spectral estimate of stationary random processes with discrete time via Doubeshies scal-

ing function is studied. 

Introduction 

One of the main problems in spectral analysis of time series is consistent esti-

mate formation of the second order spectral density via finite realization of sta-

tionary process. In numerous research dealing with the mentioned task periodo-

gram methods based on inverse Fourier transform are used.  

It’s essential to mention that various research questions for statistics of con-

sistent estimate obtained by periodogram smoothing via spectral windows are pub-

lished, for example, in monographs [1-3] and publications [4-10].  

Recent application of wavelet-analysis methods in time series study is quite rel-

evant, as the results obtained from this method are frequently more informative 

and can directly deal with such input data peculiarities which are difficult to han-

dle with the traditional approach.  

Instead of using a deterministic approach scientists usually use a stochastic ap-

proach to model the data and to estimate the energy distribution (e.g. in electrical 

engineering, geophysics, economics or neurophysiology). One reason is that in 

a stochastic setup certain fluctuations of the Fourier-transform of the data can be 

interpreted more naturally. 

1. Scaling  Doubeshies function 

Consider scaling Doubeshies function ( ) )(
2
RLx ∈ϕ  of order N∈L . The scaling 

function ( )xϕ  is continuous  and has the following properties (see [4]): 

 1)( =ϕ∫ dxx

R
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where 
k
h , Z∈k - filter of scaling function, )(supp xϕ  - support of scaling function.   

Table 1 

Example of Doubeshies scaling function (order  L = 2, L = 3)  

2=L  

0
h  0.48296291314453410 

1
h       0.836516337378077 

2
h       0.2241438680420134 

3
h  −0.1294095225512603 

3=L  

0
h  0.3326705529500825 

1
h  0.8068915093110924 

2
h  0.4598775021184914 

3
h  −0.1350110200102546 

4
h  −0.0854412738820267 

5
h  0.0352262918857095 

 

On Figures 1 and 2 some examples of the scaling Doubeshies function with 

compact support are illustrated. 

 

 
 

Fig. 1. Scaling  Doubeshies function 3L = , 
max ( ) 1.28634
x

xϕ
∈

=

R

 

( ) [ ]supp 0,5xϕ ⊂
 

 
 

 

Fig. 2. Scaling  Doubeshies function 
4=L , max ( ) 1.12165

x

x

∈

=

R

ϕ  

( ) [ ]supp 0,7xϕ ⊂  

We can construct π2 -periodical scaling, using scaling Doubeshies function via 

formula (1):  
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Function (1) is formed orthonormal basis of spase ( )Π2L . 

 

On Figure 3 some examples of  the π2 - periodical scaling function are illus-
trated. 

 

 
Fig. 3. π2 -periodical scaling function 

2. Spectral estimate  

Let ( )tX , ,Z∈t  be a wide-sense stationary stochastic process with ( ) ,0=tEX  

Z∈t , belonging to a set of random processes ( )
2

,,,, CLf αλχ .  

The set ( )
2

,,,, CLf αλχ  is defined as the set of wide-sense stationary processes 

X(t), ,Z∈t  whose spectral density is )(λf , [ ]ππ−=Π∈λ , , having a fourth-

order semi-invariant spectral density ( )3214 ,, λλλf , ,Π∈λ j  3,1=j , and such 

that for fixed П∈λ  the spectral density f satisfies ( )LLipf
α

∈  and the fourth-

order semi-invariant spectral density is bounded by a constant 02 >C . 

The definition of the class ( )
2

,,,, CLf αλχ  can be found in Zhurbenko [9].  

It contains processes with spectral densities whose peaks and troughs increase with 

,T  for example AR -process with peaks [5]. 

For a process ( )2,,,, CLfX αλχ∈ , the rate of convergence of the mean-square 

deviation of a linear wavelet estimate of the spectral density is studied in [6].  

The coefficients of the asymptotically dominant term, which depend on the 

smoothness of the spectral density, are calculated for some scaling functions and 

data tapering windows you can find in [5]. 
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Thus the information on value α  according to the aprioristic information on 

spectral density for investigated stochastic process. Such information, as a rule, is 

undertaken on the basis of supervision over several realizations for the concrete 

phenomenon. 

As spectral estimate )(λf  let’s consider statistics: 

 ( ) ( )∑
=

λϕα=λ

J

k

kJkJ
f

2

1

,,
~ˆˆ   (2) 

where 

 ,)(~)(ˆ
,, ∫

Π

ααϕα=α dI
kJTkJ

  (3) 

are wavelet-coefficients estimates in (2), and )(λ
T
I  – modified periodogram:  
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N∈k , N∈T , and function ( ) 







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hth

T
, →]1,0[:h R  - data taper, its behavior 

is studied sufficiently in [2, 6]. 

 ( )( )n
kJ

Zn

kJ
+λπϕπ=λϕ

−

∈

−

∑
1

,
2/1

, 2)2()(~   (7) 

– π2 - periodical scaling function; 

 ( ) ( )kxx J

J

kJ
−ϕ=ϕ 22 2

, , (8) 

{ },...2,1,0=∈
0
NJ , Π∈λ , ( )xϕ  - scaling function R∈x . We have to mention that 

the results cited in this article are obtained with condition of data tapers variation 

restriction.  

In the spectral analysis we can use the following data taper: 

1. Function ( )xh , [ ]1,1−∈x , bounded variation, ( ) 1=xh  in point 0=x , and 

( ) 0=xh  for 1≥x , and ( ) 0=xh  for 0<x .  
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2. Function ( )xh , bounded variation, with ( ) 1=xh  in point ,
2

1
=x  and ( ) 0=xh  

for 0≤x  and 1x≥ .  
 

A heuristic explanation is the following. Straightforward calculation gives for 

the expectation of the wavelet estimation: 

 ( ) ( ) ( )( ) ( ) γ+λλγγ++λ=λ ∫∫ dxdxKФxffE

П

J

T

2

,ˆ
2

  (9) 

where 
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are two kernel functions. One is dependent on the scaling function, the second on 

data taper. 

In paper [6] it is proved that for first moment’s estimate (2) we have: 
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In fact, one can prove that 

 ( ) ( ) ( )2ˆ −

+λ=λ TOffE   (14) 

for a sufficiently smooth data taper and for a scaling function of higher order. For 

dispersion it is valid: 
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Wavelet estimate ( )λf̂ , defined by formula (1), is consistent in the mean-

square sense estimate of spectral density ( )λf , П∈λ  for all ,2
1 ρ−

≤ RT 
J

 where 

10 <ρ< , ∞<< R0 , is some fixed constant.   

3. Calculation 

Step 1. Choose data taper ( )T
h t . Data taper ( )T

t
h t h

T

 
=  

 
 can be found from 

condition of minimization of value: 
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where  H  - same bounded set of data taper R∈xxh ),( .  

The integral   

 ( )( )∫
π

π−

α

dxxФx
T

2
    (17) 

and the sum   

 

( )

( )
∑

−








=



























 π
1

2

0

2

)(
2

2

0

2

2

T

k

T

T

H

T

k
H

T
   (18) 

can be calculated, using standard numerical methods. More examples of data taper 

functions are given below: 

1. Hemming’s window: 

 ( ) ( ),cos46.054.0 xxh π+= [ ]1,1−∈x . (19)

 
2. A triangular window:  

 ( ) xxh −=1 , [ ]1,1−∈x .     (20) 

3. Rice’s, Bohner’s, Parzen’s  window: 

 ( ) ,1
2

xxh −= [ ]1,1−∈x .  (21) 
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The data taper, chosen via this method is optimal in the sense of minimum 

mean-square deviation of the modified periodogram. 

Thus, the advantages of data tapers could also be established theoretically. The 

choice of the data taper is an important problem, for which no rigorous results 

exist. It is obvious that the choice depends on the true (unknown) spectral density, 

in particular on the relation of the peaks and troughs to each other. 
 

Step 2. Calculate modified periodogram ( )λ
T
I , via formulas (3) and (4), using 

data taper ( )xh , [ ]1,1−∈x , which we find on step 1. 
 

Step 3. Choose scaling function 
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where Φ= ( ){ }NR ∈∈ϕ Lxx
L

 , ,  - the set of Doubeshies scaling function of different 

order. 

The choice of scaling function is influenced by two characteristics by: maxi-

mum of scaling function and its support. 
 

Step 4. Calculate level J   

 ( )[ ]TJ
2

log= ,  (23) 

where [ ]•  - the whole part of number. 
 

Step 5. For calculation of initial factors we will put .

0
TJ =  

 

Step 6. Coefficients 
kJ ,0

α̂  calculate, using formula of left rectangle (see step 

6.1), or using quadrature formula (see step 6.2). 
 

Step 6.1.  Calculate coefficients via formula of left rectangle: 

 
( )

,
1212

2
12

2ˆ
1

0 11

1

1

1

,

1

00

0 ∑
−

=

+−+−








 −
ϕ
















 −
+π

−
π=α

N

l

J

T

J

kJ
l

N

L
l

N

L
kI

N

L
  (24) 

where: 
1
N - quantity of parts for integration interval ( TN ≤

1
), 12,0 0

−=

J
k . 

 

Step 6.2. Calculate coefficients via quadrature formulas  
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12,0 0
−=

J
k ; where method of are calculated of abscissas 

k
x rk ,1=  and weight 

k
ω , rk ,1=  is considered in paper [7].  

Table 2 

Example of abscissas 
k
x , k = 1,r  and weight ωk, k = 1,r , of quadrature formu-

las for Doubeshies system of order  L = 2, L = 3  

 k  
k
x  

k
ω  

2=L  

3=r  

1 0.565179  0.899173 

2 1.565179  0.132858 

3 2.565179 −0.032031 

2=L  

4=r  

1 0.247825  0.268749 

2 0.747825  0.561228 

3 1.247825  0.298997 

4 1.747825 -0.128975 

2=L  

5=r  

1 0.253425  0.276273 

2 0.753425  0.557197 

3 1.253425  0.296560 

4 1.753425 −0.130903 

5 2.253425  0.000872 

3=L  

3=r  

1 0.804695  0.990491 

2 2.804695  0.012666 

3 4.804695 −0.003156 

3=L  

4=r  

1 0.701350  0.817228 

2 1.701350  0.264924 

3 2.701350 −0.097581 

4 3.701350  0.015430 

3=L  

5=r  

1 0.661075  0.747720 

2 1.661075  0.384507 

3 2.661075 −0.174764 

4 3.661075  0.048801 

5 4.661075 −0.006264 

 

Step 7.  Calculate coefficient ,ˆˆ
,1,...,,0 kJkJ −

αα  using modified formulas 

 ∑
−

=

++
+

α=α

12

0
2mod)2(,1, 1

ˆ
1

ˆ

L

n
knjnkj jh

L
,  (26) 

where 
k
h , Z∈k - filters of  Doubeshies scaling function.   
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Step 8. Build wavelet estimate ( )λf̂ , using formula   

 ( ) ( )∑
=

λϕα=λ

J

k

kJkJ
f

2

1

,,
~

ˆˆ   (27) 

on level J . 

Estimate ( )λf̂ , constructed via the considered algorithm is optimal in minimum 

biases square. We note that other existing spectral estimates have similar resolu-

tion properties as the tapered periodogram. Those statistics are usually non-linear, 

non-quadratic and therefore very difficult to investigate theoretically. 

Conclusions 

Our theoretical results in this paper are also used for developing computational 

algorithms for wavelet estimates of the spectral density. These algorithms enable 

us: 

1) to select a data tapering windows; 
2) to choose a scaling function; 
3) to compute the level of decomposition; 
4) in order to construct the estimate minimizing the mean square deviation, de-

pending on the sample length and the smoothness of the spectral density. 
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