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Abstract. A thin metal film irradiated by multiple laser pulses is considered. The mi-
croscale heat transfer in the domain considered is described by hyperbolic two-temperature
model. This model contains two energy equations determining the heat exchange in the elec-
tron gas and the metal lattice. The problem is solved by a explicit scheme of finite difference
method. The influence of separation time between two laser pulses on the electrons and lattice
temperatures is discussed.

Introduction

From the mathematical point of view, exist nowadays the different models de-
scribing the microscale heat transfer [1-5], namely Cattaneo-Vernotte equation,
dual phase lag model, two-temperature models and Boltzmann equation. In this
paper the heat conduction in thin metal film irradiated by multiple laser pulses is
described using the microscopic hyperbolic two-temperature model supplemented
by boundary and initial conditions. The problem formulated is solved by means of
the finite difference method. The influence of separation time between two laser
pulses on the electrons and lattice temperatures is analyzed and the conclusions are
formulated.

1. Mathematical model

The two-temperature model describes the temporal and spatial evolution
of the lattice and electrons temperatures (7; and 7,) in the irradiated metal by two
coupled nonlinear differential equations [1, 2] (1D problem)
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where T, (x, 1), T;(x, f) are the temperatures of electrons and lattice, respectively,
CAT,), C(T)) are the volumetric specific heats, G(7,) is the electron-phonon coupling
factor ~which characterizes the energy exchange between electrons
and phonons [3], O(x, ) the source function associated with the irradiation.

In a place of classical Fourier law the following formulas are introduced
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where AJ(T,, T;), M(T;) are the thermal conductivities of electrons and lattice, respec-
tively, 1. is the relaxation time of free electrons in metals, 1; is the relaxation time
in phonon collisions.

Using the Taylor expansion the equations (3) and (4) can be written in the form
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The laser irradiation is taken into account in the source term (c.f. equation (1))
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where [ is the laser intensity, #, is the characteristic time of laser pulse, 6 is the
optical penetration depth, R is the reflectivity of the irradiated surface and § = 4 In2
and f is the separation time between two laser pulses [6].
To define the thermal conductivity A, and heat capacity C, of electrons the
following formulas are widely used [1, 2, 7-10]
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where L, v are the material constants. It should be pointed out that the simple form
of dependences (8), (9) is only suitable for low laser intensity. For such intensities,
constant values of C; and A, are also very commonly assumed.

2. Method of solutions

To solve the problem formulated the algorithm based on the finite difference
method is proposed. A staggered grid is introduced [8, 11] (Fig. 1). Let us denote
/=T (ih, fAf), where h is a mesh size, Afisa time step, i=0,2,4,..,N, f=0,
1,2,... F, and g/=q(ih, fAr), wherej =1,3, ..., N-1.

temperature nodes [ i ]

heat flux nodes [ j ]

Fig. 1. Discretization

The finite difference approximation of equations (5) and (6) using the explicit
scheme can be written in the form:
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where index j corresponds to the 'heat flux nodes' (Fig. 1).
The dependencies (10), (11) allow one to construct the similar formulas for
nodes i—1, i+1 and then one obtains
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Now, the equations (1), (2) are discretized using the explicit scheme of the finite
difference method
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where index i corresponds to the 'temperature nodes' as shown in Figure 1.
Putting (12) into (14) and (13) into (15) one has:
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From equation (16) results that

; (A1)? 7»{; ,:ll (At)? x{ffl GAt | 1 (Ar)? ng:ll -1
L s Sy = R ey i eyl ey sy Y
4h° 1, CL7 4ht1,ClT C

24 f-1
(At) }\45141 fﬁl GAt Tf,l + At(Te —At)( ffl ffl)_{_
4]12 T, Cefi_l ei+2 Cefi_l li 2h"~'e Cefl'_l ei—1 ei+l

From equation (17) results that
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In numerical computations the following approximation of thermal conductivities
has been used (c.f. equations (18), (19)) and (c.f. equations (10), (11))
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It should be pointed out that adequate stability criteria for explicit scheme must
be fulfilled, this means (equations (10), (11))

te—At> t,—At>

>0, > 22
2ht, 2hT, 22)
and (c.f. equations (18), (19)):
AT A0 Gar)
4t /7t antc, /7t e/
(23)

@0 @AM Gl
AT, ARG ol

3. Results of computations

The gold film of thickness L = 100 nm (1 nm = 10~ m) is considered. Initial
temperature is equal to 7, = 300 K. The layer is subjected to a short-pulse laser
irradiation (R = 0.93, I, = 10 J/m?, t,= 0.1 ps, 6 = 153 nm - c.f. equation (7)).
Thermophysical parameters are following: A, = Ay, A, = T, /T;, where Ay =
=315 W/(mK), C;=2.5 MJ/(m’ K), C, = yT,, where y = 62.9 J/(m’ K?), 7. = 0.04 ps
(1ps=10"%), 1, =0.8 ps, G=2.6 - 10" W/(m’K) [2]. The problem is solved using
the finite difference method under the assumption that Az=0.001 ps and #= 1 nm.

Figure 2 shows the comparison of numerical results for thin gold film (x = 0
and I, = 13.4 J/m®) with experimental data presented in [2]. The line and the sym-
bols represent calculated temperature of electrons and experimental data, respec-
tively. The agreement of the results obtained and measured temperatures is very
good.

In Figure 3 the heat source profiles for different separation times between laser
pulses, namely /= 44, f= 6t, and f = 81, respectively are presented.
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Fig. 2. Comparison of calculated electron temperature with experimental data for 100 nm
gold film
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Fig. 3. Heat source profiles for different values of separation time: a) /= 41,, b) f = 61,, ¢) f = 84,

In Figures 4 and 5 the calculated electrons and lattice temperature profiles at the
irradiated surface (x = 0) in Au thin film for different values of separation time f* are
presented. This is visible that the separation time has a greater effect on electron
temperature than the temperature of lattice. The longer separation time between
laser pulses the later equilibrium of electrons and lattice temperatures is observed.
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Fig. 4. Profiles of electrons temperatures for different values of f
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Fig. 5. Profiles of lattice temperatures for different values of f°

Conclusions

The hyperbolic two-temperature model assures a good agreement between

calculated and measured electron temperatures. It should be emphasized that the use
of multiple laser pulses and different separation times allows the lattice to achieve
the assumed temperature without increasing the laser power.
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