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Abstract. A thin metal film irradiated by multiple laser pulses is considered. The mi-

croscale heat transfer in the domain considered is described by hyperbolic two-temperature 

model. This model contains two energy equations determining the heat exchange in the elec-

tron gas and the metal lattice. The problem is solved by a explicit scheme of finite difference 

method. The influence of separation time between two laser pulses on the electrons and lattice 

temperatures is discussed.  

Introduction  

From the mathematical point of view, exist nowadays the different models de-

scribing the microscale heat transfer [1-5], namely Cattaneo-Vernotte equation, 

dual phase lag model, two-temperature models and Boltzmann equation. In this 

paper the heat conduction in thin metal film irradiated by multiple laser pulses is 

described using the microscopic hyperbolic two-temperature model supplemented 

by boundary and initial conditions. The problem formulated is solved by means of 

the finite difference method. The influence of separation time between two laser 

pulses on the electrons and lattice temperatures is analyzed and the conclusions are 

formulated. 

1. Mathematical model  

The two-temperature model describes the temporal and spatial evolution  

of the lattice and electrons temperatures (Tl and Te) in the irradiated metal by two 

coupled nonlinear differential equations [1, 2] (1D problem) 
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where Te (x, t), Tl (x, t) are the temperatures of  electrons  and  lattice,  respectively, 

Ce(Te), Cl(Tl) are the volumetric specific heats, G(Te) is the electron-phonon coupling 

factor which characterizes the energy exchange between electrons  

and phonons [3], Q(x, t) the source function associated with the irradiation. 

In a place of classical Fourier law the following formulas are introduced 

 
( , )

( , τ ) λ ( , ) e

e e e e l

T x t
q x t T T

x

∂
+ = −

∂
 (3) 

 
( , )

( , τ ) λ ( ) l

l l l l

T x t
q x t T

x

∂
+ = −

∂
 (4) 

where λe(Te, Tl), λl(Tl) are the thermal conductivities of electrons and lattice, respec-

tively, τe is the relaxation time of free electrons in metals, τl is the relaxation time 

in phonon collisions. 

Using the Taylor expansion the equations (3) and (4) can be written in the form 
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The laser irradiation is taken into account in the source term (c.f. equation (1)) 
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where I0 is the laser intensity, tp is the characteristic time of laser pulse, δ is the  

optical penetration depth, R is the reflectivity of the irradiated surface and β  = 4 ln2 

and f  is the separation time between two laser pulses [6].  

To define the thermal conductivity λe and heat capacity Ce of electrons the 

following formulas are widely used [1, 2, 7-10] 
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where λ0, γ are the material constants. It should be pointed out that the simple form 

of dependences (8), (9) is only suitable for low laser intensity. For such intensities, 

constant values of Cl and λl are also very commonly assumed. 

2. Method of solutions  

To solve the problem formulated the algorithm based on the finite difference 

method is proposed. A staggered grid is introduced [8, 11] (Fig. 1). Let us denote  

Ti
f 
= T (ih, f∆t), where h is a  mesh size, ∆t is a  time  step,   i  = 0, 2, 4, ..., N,    f  =  0, 

1, 2, ..., F,  and  qj
f 
= q(jh,  f∆t),  where j  = 1, 3, ...., N-1. 

 

 

Fig. 1. Discretization 

The finite difference approximation of equations (5) and (6) using the explicit 

scheme can be written in the form: 

 

1 11

1 11 1
λ

2

f ff f
e j e j e j e jf f

e j e e j

T Tq q
q

t h
τ

− −−

+ −− −
−−

+ = −
∆

 (10) 

 

1 1 1

1 11 1
λ

2

f f f f
l j l j l j l jf f

ll j l j

q q T T
q

t h
τ

− − −

+ −− −
− −

+ = −
∆

 (11) 

where index  j corresponds to the 'heat flux nodes' (Fig. 1).  

The dependencies (10), (11) allow one to construct the similar  formulas  for  

nodes i−1, i+1 and then one obtains 
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Now, the equations (1), (2) are discretized using the explicit scheme of the finite 

difference method 
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where index i corresponds to the 'temperature nodes' as shown in Figure 1. 

Putting (12) into (14) and (13) into (15) one has: 
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From equation (16) results that 
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From equation (17) results that 
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In numerical computations the following approximation of thermal conductivities 

has been used (c.f. equations (18), (19)) and (c.f. equations (10), (11)) 
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It should be pointed out that adequate stability criteria for explicit scheme must  

be fulfilled, this means (equations (10), (11)) 
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and (c.f. equations (18), (19)): 
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3. Results of computations 

The gold film of thickness L = 100 nm (1 nm = 10
−9 
m) is  considered. Initial 

temperature is equal to Tp = 300 K. The layer is subjected to a short-pulse laser 

irradiation (R = 0.93, I0 = 10 J/m
2
, tp = 0.1 ps, δ = 15.3 nm - c.f. equation (7)). 

Thermophysical parameters are following: λl = λ0, λe = λ0Te /Tl, where λ0 =  

= 315 W/(mK), Cl = 2.5 MJ/(m
3 
K), Ce  = γTe, where γ = 62.9 J/(m

3 
K

2
), τe  = 0.04 ps   

(1 ps = 10
−12
s), τl  = 0.8 ps, G = 2.6 ⋅ 10

16
 W/(m

3
K) [2]. The problem is solved using  

the finite difference method under the assumption that ∆t = 0.001 ps and h = 1 nm. 

Figure 2 shows the comparison of numerical results for thin gold film (x = 0 

and I0 = 13.4 J/m
2
) with experimental data presented in [2]. The line and the sym-

bols represent calculated temperature of electrons and experimental data, respec-

tively. The agreement of the results obtained and measured temperatures is very 

good.  

In Figure 3 the heat source profiles for different  separation  times between laser 

pulses, namely f = 4tp, f = 6tp and f = 8tp, respectively are presented. 
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Fig. 2. Comparison of calculated electron temperature with experimental data for 100 nm 

gold film 

a) b)

 

c)

 

Fig. 3. Heat source profiles for different values of separation time: a) f  = 4tp, b) f  = 6tp, c) f  = 8tp 

 

In Figures 4 and 5 the calculated electrons and lattice temperature profiles at the 

irradiated surface (x = 0) in Au thin film for different values of separation time f  are 

presented. This is visible that the separation time has a greater effect on electron 

temperature than the temperature of lattice. The longer separation time between 

laser pulses the later equilibrium of electrons and lattice temperatures is observed.  



Application of two-temperature model for numerical study of multiple laser pulses interactions … 

 

69

 

Fig. 4. Profiles of electrons temperatures for different values of  f  

 

Fig. 5. Profiles of  lattice temperatures for different values of  f  

Conclusions 

The hyperbolic two-temperature model assures a good agreement between 

calculated and measured electron temperatures. It should be emphasized that the use 

of multiple laser pulses and different separation times allows the lattice to achieve 

the assumed temperature without increasing the laser power.  
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