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Abstract. We use the notion of rational self-equivalence which is a special case of Hilbert-

symbol equivalence of fields, where both fields are considered to be the field ℚ of rational 

numbers. We define a small self-equivalence of the field ℚ as a special case of  small 

equivalence of fields - a tool for constructing Hilbert-symbol equivalence of fields. We shall 

show, that one can choose initial sets of prime numbers and then control the processes of 

extending of small self-equivalence such that uncountable many rational self-equivalences 

can be constructed. The final conclusion is the corollary deciding that the group of strong 

automorphisms of Witt ring W(ℚ) of rational numbers is uncountable. 

Introduction 

In this paper we shall show, how uncountalbly many strong automorphisms of 

Witt ring W(ℚ) can be constructed. 

We will use the notion of Hilbert-symbol equivalence of fields considered in 

[1], [2] and [3]. The ideas contained in these works are the base of our construc-

tions. The restriction to the field ℚ of rational numbers allows us to simplify many 

details, therefore instead of frequent reference to literature we try to present the 

solution of the problem in the most complete way. In this section we shall outline 

the notions and facts which will be used in the paper. We use properties and facts 

from number theory, which can be found in [2], [4], [5] or [6]. 

Consider the field ℚ of rational numbers. Let IP denote the set of prime num-

bers together with the symbol ∞. In the follow we consider its two subsets: 

IP1 = {p ∈ IP \ {∞} : p ≡ 1 (mod 4)}, IP3 = {p ∈ IP \ {∞} : p ≡ 3 (mod 4)}. 

For each prime number p there exists a completion ℚp of the field ℚ with respect 

to p-adic valuation vp called the field of p-adic numbers. Moreover we assume that 

ℚ∞ = ℝ is a completion of ℚ with respect to usual absolute value (see [4]). Let t be 

an automorphism of the group of square classes t : ℚ*/ℚ*
2
 → ℚ*/ℚ*

2
  

and let T be an invertible map T : IP → IP preserving Hilbert symbols in the sense 

that (a,b)p = (t(a),t(b))T(p) for all a,b ∈ ℚ*/ℚ*
2
 and for all p ∈ IP . The pair of maps 
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),( tT  we will call the Hilbert-symbol rational self-equivalence or shortly just ra-

tional self-equivalence. The notion of rational self-equivalence is a special case of 

a more general notion of Hilbert-symbol equivalence of fields, where the prime 

numbers are replaced by prime ideals of global fields (see [2, 3]). 

Two number fields have isomorphic Witt rings of quadratic forms if and only if 

there is a Hilbert-symbol equivalence between them (comp. [3]). Namely the bijec-

tion t fulfilling the above conditions induces a strong isomorphism of Witt rings. 

Constructing of Hilbert-symbol equivalence between Witt equivalent number 

fields is not an easy problem. The task of defining maps between infinite sets is 

difficult since there is no method of doing this in a finite number of steps. In [3] 

the authors reduced this problem to the problem of constructing so called small 

equivalence, which requires defining maps between finite sets of prime ideals. For 

more details the reader is referred to [3]. We use these ideas in order to construct 

the set of rational self-equivalences. There was shown in [7] that the set of rational 

self-equivalences is infinite and the effective construction of rational self-

equivalences was presented. In this paper we shall prove that the set of rational 

self-equivalences is, in fact, uncountable. 

Let p and q be two elements in the set IP. Every group isomorphism 

tlok : ℚp*/ℚp*
2
 → ℚq*/ℚq*

2
 preserving Hilbert symbols will be called local isomor-

phism. The local isomorphism tlok is an isomorphism of quaternionic structures of 

local fields ℚp and ℚq (for more information about quaternionic structures and 

their isomorphisms see [8, 9]). If p and q are prime numbers, then the local iso-

morphism tlok : ℚp*/ℚp*
2
 → ℚq*/ℚq*

2
 is called tame if vq(tlok(x)) ≡ vp(x) (mod 2).  

It is well-known that if the prime numbers p and q are equivalent to 3 modulo 4, 

then 1−  is not a square in fields ℚp and ℚq and every local isomorphism maps 1−  

to 1− . In this case every local isomorphism is tame. It is easy to notice that exactly 

two local isomorphisms exist for such a prime numbers p and q. The first one ful-

filling tlok(p) = q we call simple local isomorphism and the other one qptlok −=)(  

we call skew local isomorphism.  

By [3] p. 376 it follows that the rational self-equivalence (T,t) determines the 

family of local isomorphisms tp : ℚp*/ℚp*
2
 → ℚT(p)*/ℚT(p)*

2
 fulfilling the condition 

tp(aℚp*
2
) = t(a)ℚT(p)*

2
. 

Let { }
k

ppS ,,

1
…=  be any finite subset of IP containing 2 and ∞. Let us fix that 

∞=
1
p  and 2

2
=p . We define the set of S-singular elements as follows: 

ES = {x ∈ ℚ* : vp(x) ≡ 0 (mod 2)  for every  p ∉ S} 

Notice that ES is a subgroup of the multiplicative group of the field ℚ containing 

all squares of non-zero rational numbers. Therefore the quotient group ES/ℚ*
2 
 is 

a subgroup of the group of square classes ℚ*/ℚ*
2
. 

For any element p ∈ IP the group Gp = ℚp*/ℚp*
2
 (of exponent 2) can be viewed 

as a vector space over the two-element field IF2 and the Hilbert symbol determines 
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non-degenerate bilinear form βp : Gp × Gp → IF2 such that ( ) ( ) ( )bap
pba

,

1,
β

−= . For 

given finite subset S ⊂ IP we create a bilinear space (GS,βS), where  

=
S
G  ∏

∈Sp

pG  =  ∏
∈Sp

ℚp*/ℚp*
2
           ( ) .),(][,][ ∑

∈

∈∈
=

Sp

pppSppSppS baba ββ  

The space ( )
SS

G β,  is an orthogonal sum of non-degenerate bilinear subspaces, 

hence it is also non-degenerate.  

For every p ∈ IP the natural imbedding of the field ℚ in ℚp induces the group 

homomorphism ip: ℚ*/ℚ*
2
 → ℚp*/ℚp*

2
 which is surjective. For given finite set 

{ }⊂=
n

ppS ,,

1
…  IP we get the diagonal homomorphism diagS : ℚ*/ℚ*

2 
→ GS de-

fined by diagS(aℚ*
2
) = [ip1

(a),…, ipn
(a)] = [aℚ 2*

1p
,…, aℚ 2*

np
] for all a ∈ ℚ.  

In order to simplify the notation the rational number a will be often identified with 

its class of squares aℚ*
2
 and we will use the notation =a diagS(aℚ*

2
). The re-

striction of the homomorphism diagS to the set of square classes of S-singular ele-

ments we denote by iS.  

 

Lemma 1.1. If { }⊂∞=
n

ppS ,,,2,
3
…  IP, then 

1. {-1ℚ*
2
, 2ℚ*

2
, p3ℚ*

2
, …,pnℚ*

2
} is a basis of the space ES/ℚ*

2
. 

2. dim(ES/ℚ*
2
) = |S|. 

3. iS is a group monomorphism. 

4. dim GS = 2|S|. 

5. The subspace iS(ES/ℚ*
2
) is equal to its orthogonal completion in the linear 

space ( )
SS

G β, . 

 

Proof. By the definition of the set ES it follows that prime numbers which are not 

in S can appear in decomposition of x only with even exponents. Let 

( ) ml

m

lnenk

n

ek
eke

qqppx
212

1

2332

3

2221
21 ⋯⋯

++
+

−=  where Sqqq
n
∉,,,

21
… are prime 

numbers, ki,li ∈ ℤ and ei ∈ {0,1} be a canonical decomposition of any nonzero 

rational number x. Then xℚ*
2
 = ( ) n

e

n

eee

pp ⋯
3

3

21
21− ℚ*

2
. Hence the elements of 

the group ES/ℚ*
2
 are uniquely represented by integers of the form 

( ) n
e

n

eee

pp ⋯
3

3

21
21− . In particular the elements –1ℚ*

2
, 2ℚ*

2
, …, p3ℚ*

2
, pnℚ*

2
 

create a basis of linear space ES/ℚ*
2
 over IF2 and dim ES/ℚ*

2
 = |S|. This finishes 

the proof of 1 and 2. 

3. If x ∈ ker iS, then x is a square in each p-adic field for p ∈ S and it follows 

that 0>x  since the squares in the field ℚ∞ = ℝ are positive numbers and 

( ) 0≡xv
p

( )2mod  for prime numbers in S. It shows that x is a product of prime 
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numbers with even exponents, hence x is a square of a rational number. Therefore 

ker iS = {ℚ*
2
}. 

4. It suffices to notice that nnGG

Sp

pS 2)2(231dimdim =−++==∑
∈

 since 

dim G∞ = dim ℝ*/ℝ*
2
 = 1, dim G2 = dim ℚ2*/ℚ2*

2
 = 3 and dim Gp = dim ℚp*/ℚp*

2
 = 

= 2 for odd prime numbers p. 

5. Let x, y ∈ ES. By Hilbert reciprocity law   Π(x,y)p = 1 we get 
  p ∈ IP 

Π(x,y)p = Π(x,y)p . 
    p ∈ S                      p ∈ IP \ S 

For every p ∈ IP \ S the elements x, y are p-adic units, hence (x,y)p = 1. Therefore 

( ) ( ) ( )
( )

( ) 1,11
,

,

==−=− ∏∏
∈∈ Sp

p

yxp

Sp

yxS
yx

ββ
 

Thus we get 0),( =yx
S
β . It follows that for F = iS(ES/ℚ*

2
) we have 

⊥
⊆ FF and 

consequently ⊥
≤ FF dimdim . Since iS is a monomorphism, hence dim F = 

= dim ES/ℚ*
2
 = |S|. It is well-known that the bilinear space ( )

SS
G β,  is non-

degenerate, thus by the orthogonal complement theorem we get =
⊥
Fdim  

= =− FG
S

dimdim  nSS =− ||||2 . Since the subspaces F and ⊥
F  have the same 

dimensions and one of them is contained in the second one, thus ⊥
= FF .  

 

Definition 1.2. A small self-equivalence of the field ℚ defined on the set S is 

a triplet )}{,,( SpptTS
∈

=ℜ  where 

1) S is a finite subset of IP and ∞, 2 ∈ S; 

2) T : S → IP is an injection; 

3) Sppt ∈
}{  is a family of local isomorphisms tp : ℚp*/ℚp*

2
 → ℚT(p)*/ℚT(p)*

2
 pre-

serving Hilbert symbols, i.e. ( ) ( ) ( )( )
)(

,,

pTppp btatba =  for all a,b ∈ ℚp*/ℚp*
2
 . 

 

The above definition of small self-equivalence imposes some restrictions on the 

map T. Namely T(∞) = ∞, since p = ∞ is the only element of the set IP such that 

dim ℚp*/ℚp*
2
 = 1. Similarly T(2) = 2, since p = 2 is the only element of the set IP 

such that dim ℚp*/ℚp*
2
 = 3. Moreover by preserving the Hilbert symbol by the 

isomorphism tp : ℚp*/ℚp*
2
 → ℚT(p)*/ℚT(p)*

2
 it follows that the quaternionic struc-

tures of the fields ℚp i ℚT(p) are isomorphic, what holds if and only if T(p) ≡ p (mod 

4). Conversely, if the injection T : S → IP fulfills these conditions, thus for any 
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HS ⊆ ES /ℚ*
2
 GS 

HS’ ⊆ ES’ /ℚ*
2
 GS’ 

iS 

iS’ 

tS τS 

choice of local isomorphisms tp : ℚp*/ℚp*
2
 → ℚT(p)*/ℚT(p)*

2
 for p ∈ S the triplet 

)}{,,( SpptTS
∈

 is a small self-equivalence. 

Let us denote S' = T(S). By injectivity of the map T it follows that the sets S and 

S' have the same cardinality. A small self-equivalence defined on S induces group 

isomorphism 
'

:
SSS
GG →τ which is a product of the family of local isomorphisms 

determined by the equivalence. If [ ]
Sn

G∈αα ,,
1
… , then ( ) =],,[

1 nS
αατ …  

= [ ])(,),(
11 nnpp

tt αα … . Any small self-equivalence determines two sets  

HS = {α ∈ ES /ℚ*
2
 : τS ◦ iS (α)∈ iS’(ES’ /ℚ*

2
)} ⊆ ES/ℚ*

2
 , 

HS’ = {γ ∈ ES’ /ℚ*
2
 : τS

-1
 ◦ iS’(γ)∈ iS(ES /ℚ*

2
)} ⊆ ES’ /ℚ*

2
 . 

Since the maps iS, iS’, τS are monomorphisms, then 
SHSSSS

iit ��τ
1

'

−

=  maps HS 

isomorphically into HS’. The situation is presented on the following diagram  

 

 

 

 

 

 

 

 

Lemma 1.3. For any small self-equivalence defined on the set S the following 

conditions are equivalent: 

1. HS = ES/ℚ*
2
. 

2. HS’ = ES’ /ℚ*
2
. 

3. τS ◦ iS(ES /ℚ*
2
) = iS’(ES’ /ℚ*

2
). 

 

Proof. It suffices to notice that by lemma 1.1 dim iS(ES /ℚ*
2
) = dim iS’(ES’ /ℚ*

2
), 

because the sets S and S' are equinumerous. 

 

If at least one of the conditions of the above lemma 1.3 is fulfilled, then the 

small self-equivalence ℜ  will be called regular. In the other case we say that 

small self-equivalece is irregular and the number defℜ= dim ES/ℚ*
2
 – dim HS we 

call defect of small self-equivalence. If the small self-equivalence defined on the 

set S is regular, then tS is a group isomorphism between ES/ℚ*
2
 and ES’/ℚ*

2
 and the 

equality 
SSSS
tii ��

'
=τ  holds. 

 

Definition 1.4. We say that the small self-equivalence )}{,,(
1

)1(
111 SpptTS

∈
=ℜ  is an 

extension of the small self-equivalence )}{,,( SpptTS
∈

=ℜ  if 
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1) 
1
SS ⊆ ; 

2) the map T1 is an extension of the map T; 

3) 
)1(

pp
tt =  for all Sp∈ ; 

4) 
1SS HH ⊆  and the global isomorphism 

1S
t  is an extension of the isomorphism tS. 

We say that the extension )}{,,(
1

)1(
111 SpptTS

∈
=ℜ  of the small self-equivalence 

)}{,,( SpptTS
∈

=ℜ  is determined by q, q' ∈ IP and the local isomorphism 

tq : ℚq*/ℚq*
2
 → ℚq’*/ℚq’*

2
 where }{

1
qSS ∪=  and T1 is an extension of T such 

that T1(q) = q' and }{}{}{
1

)1(
qSppSpp ttt ∪=

∈∈
. 

 
We shall show that any regular small self-equivalence defined on arbitrary fi-

nite subset of IP containing 2 and ∞ can be extended to a rational self-equivalence. 

Next we will notice that the map t : ℚ*/ℚ*
2
 → ℚ*/ℚ*

2
 obtained in such a con-

struction induces a strong automorphism of the Witt ring W(ℚ) of rational num-

bers. We shall show how to control the construction in order to get uncountably 

many rational self-equivalences or uncountably many strong automorphisms of 

Witt ring W(ℚ). 

1. The construction of rational self-equivalences 

Lemma 2.1 Assume that S ⊂ IP is a finite set, ∞, 2 ∈ S and 
S

G∈α . Then there 

exists a prime number Sq∉  and an element 
S

Ec∈  such that diagS(cqℚ*
2
) = α. 

 
Proof. Let 

n
aa ,,

1
…  be integers, which are not squares and let α = [a1ℚ

2*

1p
, 

a2ℚ
2*

2p
,…, anℚ

2*

np
]. We can assume that }1,1{

1
−∈a . By the Chinese remainder 

theorem it follows that there exists a natural number b such that )16(mod
21
aab ≡  

and )(mod 2

1 ii
paab ≡  for ni ,,3…= . Let us denote by 2

3
)4( nppM ⋯=  and 

),gcd( Mbd = . Then the numbers 
d

b  and 
d

M  are coprime and by Dirichlet’s theo-

rem it follows that the arithmetic progression )(
d

M

d

b
k+ k∈ℕ contains infinitely 

many prime numbers. Let q be one such number coprime to M, thus Sq∉ . Let us 

denote dqaa
1

= . It is obvious that )(mod
1

Mbaa ≡ , hence )(mod 2

1 ipbaa ≡  and 

)(mod Mbqd ≡  thus by transitivity of congruence relation we have 

)(mod 2

1 ii paaqd ≡  and consequently )(mod 2

1 ii
padqa ≡ . Assume that c = a1d.  
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Therefore we have )(mod 2

ii
pacq ≡ . Since d | M  hence 

S
Ed∈  and it follows that 

the element c = a1d is in ES.  

Notice that the numbers cq and a1 are both positive or both negative. Moreover 

2)()(
22

<= cqvav
i

, )(4
22

acqv −≤  and )(2)()( iipipiip
acqvcqvav −≤<= , then 

by Hensel's lemma it follows that cqℚ
2*

ip
 = aiℚ

2*

ip
 for ni ,,2…= . Therefore we 

get iS(cqℚ*
2
) = α. � 

 

Lemma 2.2. For any regular small self-equivalence )}{,,( SpptTS
∈

=ℜ  and for 

any prime number q ∈ IP \ S there exists such a prime number '' Sq∉  that for any 

tame local isomorphism 
'

:
qqq

GGt →  the extension of the small self-equivalence 

ℜ  determined by elements q, q', tq has a defect not bigger than 1. Moreover, there 

exists a tame local isomorphism 
'

:
qqq

GGt →
•

 such that the extension of self-

equivalence ℜ  determined by elements q, q', 
•

q
t  is a regular small self-

equivalence. 

 

Proof. Let us fix S’ = T(S) and { }qSS ∪=
1

. If ℜ  is a regular small self-

equivalence, then 
SSSS
tii ��

'
=τ . Using lemma 2.1 there exists a prime number 

'' Sq∉  and an integer 
'S

Ea∈  such that )(' qaq Sτ= . We define { }'''
1

qSS ∪=  and 

)()(
1

pTpT =  for Sp∈  and ')(
1

qqT = . Take any element 
S

Ex∈ . Since ℜ  is 

regular, then there exists an element 
'

'
S

Ex ∈  such that ')( xx
S
=τ . Since 

)()](,[)(
111 SSqS Eixixxi ∈= , then according to lemma 1.1 ( )=)](,[)],(,[

1
qiqxix qqSβ  

= ( ) ( ) 0)(),(, =+ qixiqx qqqS ββ . Similarly )()]'(,'[)'(
'
1

'
1

''
1 SS

q
S

Eixixxi ∈= , hence 

according to lemma 1.1 ( ) =β )]'(,'[)],'(,'[ '''
1

qiqxix qqS
( )+','

'
qxSβ ( )=)'(),'(

'''
qixi

qqq
β  

= 0. Using the first formula and the fact that 
S
τ  maps isometrically the space 

),(
SS

G β  into ),(
'' SS

G β  we get ( ) ( ) ( )',')(),(,),(
''

aqxqxqxqx SSSSSq βττβββ === . 

Using again lemma 1.1 for elements 
'

,'
S

Eax ∈  and the second formula above we 

get ( ) ( ) ( ) ( ) ( )','','',','','
'''''

qxqxqxaxaqx qSSSS βββββ ==+= . In this way we have 

shown that 

( ) ( )',',
'

qxqx
qq
ββ = .    (1) 

In particular for 1−=x  we have )',1(),1(
'

qq
qq
−=− ββ , which means ( ) ( )

'

11

qq

−−

= , 

which is equivalent to )4(mod'qq ≡ . The last fact implies existing the local iso-

morphisms of groups of square classes of q-adic and q’-adic fields ℚq*/ℚq*
2
 and 
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ℚq’*/ℚq’*
2
. Let  tq : ℚq*/ℚq*

2
 → ℚq’*/ℚq’*

2
 be any tame local isomorphism. By 

definition tq maps q-adic units to q’-adic units. Moreover since q is not a q-adic 

unit, then }'','{)( quqqt
q
∈ . We shall show that q, q’ and tq determine the extension 

1
ℜ  of  the small self-equivalence ℜ . We have to show, that ES /ℚ*

2
 = HS ⊆ 

1S
H . 

Since ℜ  is regular, then the global isomorphism tS determined by ℜ  is defined 

on whole group ES /ℚ*
2
. Take any element x ∈ HS = ES /ℚ*

2
. There are two cases 

possible: 1. if ')( qqtq = , then ( ) ( ) ( )'),()(),(,
''

qxtqtxtqx qqqqqq βββ ==  and 2. if 

'')( quqt
q
= , then ( ) ( ) ( )=== ''),()(),(,

''
quxtqtxtqx

qqqqqq
βββ ( )+'),(

'
uxt

qq
β  

( )=+ '),(
'

qxtqqβ ( )'),(
'

qxt
qq

β , because tq(x) and u’ are q’-adic units. Therefore 

( ) 0'),(
'

=uxtqqβ . Using the formula (1) for )(' xtx
S
=  in both cases we get 

( ) ( )'),('),(
''

qxtqxt qqSq ββ =  and consequently )()( xtxt qS =  in the group 

ℚq’*/ℚq’*
2
. Therefore we have shown that ( )

''
1

11
))(()(

SS
S

SS
ixtixi ∈=τ (ES’ /ℚ*

2
), 

hence 
1S

Hx∈ . The defect of rational small self-equivalence 
1
ℜ  is 

def
11

dim)(
S

E=ℜ /ℚ*
2
 – 

11
dimdim SS EH ≤ /ℚ*

2
 – 1||||dim

1
=−= SSH

S
. 

Now we will show that for properly chosen local isomorphism we will get 

a regular extension of small self-equivalence ℜ . Assume that 

ℚq*/ℚq*
2
 = },,,1{ uqqu  and ℚq’*/ℚq’*

2
 = }'',',',1{ ququ . We define the local iso-

morphism 
•

q
t  : ℚq*/ℚq*

2
 → ℚq’*/ℚq’*

2
 by ')( uut

q
=

•

 and ')( aqqt
q
=

•

. The remain-

ing values of 
•

q
t  are uniquely determined: 1)1( =

•

q
t  and '')( aquuqt

q
=

•

. We can see 

that 
•

q
t  is tame. If a is a square in ℚq’, then 

•

q
t  is a simple local isomorphism, in the 

other case 
•

q
t  is a skew local isomorphism. 

It is easy to notice that 
1S

E /ℚ*
2
 = ES /ℚ*

2
 ∪ qES /ℚ*

2
. In order to show that the 

small rational self-equivalence 
1
ℜ  determined by ℜ  and the elements q, q’ and 

•

q
t  

is regular it suffices to check if 
1S

Hq∈ , that means if the extension 
1S

t  of global 

isomorphism tS can be defined for element 
1S

Eq∈ /ℚ*
2
. Easy calculation 

( )=)(
11
qi

SS
τ ( ) [ ] [ ] ( ) )('',')(),(],[

'
1

'
1

'
1

1 SSS
qSS Eiaqiaqaqqtqqq ∈===
•

ττ  shows that 

')(
1

aqqt
S
= . In general 

e

S

e

S
aqxtxq )')(()(

1
=τ  for all 

S
Ex∈  and }1,0{∈e . 

 

Lemma 2.3. For every rational small self-equivalence )}{,,( SpptTS
∈

=ℜ  with 

defect equal to 1 there exist prime numbers q, q’∈ IP and a local isomorphism 

'
:

qqq
GGt →  such that the extension of ℜ  determined by q, q’, tq is a regular 

small self-equivalence. 
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Proof. Let us denote by S’ = T(S). Let tS be a fixed global monomorphism 

determined by ℜ . According to hypothesis dim ES /ℚ*
2
 – dim HS =1, hence there 

exists S-singular element x such that ()(
'SS

ix ∉τ ES /ℚ*
2
). By lemma 1.1 it follows 

that iS’(ES’ /ℚ*
2
) equals to its orthogonal completion, hence every element, which 

does not belong to this set can not be orthogonal to all its elements. This means 

that there exists S’-singular element y ∈ ℚ* such that 1)),((
'

=yx
SS

τβ . 

For any 
S

Ez∈ we have 0),())(),((
'

== zxzx
SSSS

βττβ , hence 
'S

Hy∉ . Next we 

have 1))(,()),((
'

1
==

−

xyxy
SSSS

τβτβ , thus 
SS
iy ∉

−

)(
1

τ (ES /ℚ*
2
). By lemma 2.1 

there exists a prime number Sq∉ and the number 
S

Ea∈ , such that )(
1
yaq

S

−

=τ . 

Similarly there exists a prime number '' Sq∉ and the number 
'

'
S

Ea∈ , such that 

)('' xqa
S
τ= . We define two sets }{

1
qSS ∪=  and }'{''

1
qSS ∪= . First we notice 

that if zℚ*
2
 ∈ HS , then z ∈ ℚq*

2
. In fact, since z and aq are S1-singular elements, 

therefore by lemma 1.1 it follows that 0),( =aqz
S
β  and consequently we get 

0)),(())(,(),(),(
'

1
====

−

yzyzaqzaqz SSSSSq τβτβββ . The last equality follows 

from 
'

),(
SS
iyz ∉τ (ES /ℚ*

2
). Since z is q-adic unit modulo ℚ*

2
, hence by equalities 

1)( =aqv
q

 and 0),( =aqz
q
β  it follows that z ∈ ℚq*

2
. 

Analogously taking any S’-singular element z’ such that z’ℚ*
2
 ∈ HS’ and using 

equalities 0)),'(())(,()','(
1

''
===

−

xzxzaqz SSSSq τβτββ  we find that z’ ∈ ℚq*
2
. 

Since 
S
H∈−1  and 

'
1

S
H∈− , thus in particular it follows that –1 ∈ ℚq*

2
 and 

–1 ∈ ℚq’*
2
. This shows that q, q’ ∈ IP1.  

We extend the small self-equivalence ℜ  to equivalence )}{,,(
1111 SpptTS
∈

=ℜ  by 

extending bijection T to the set S1 and setting ')(
1

qqT = . It remains to define 

a local isomorphism tq : ℚq*/ℚq*
2
 → ℚq’*/ℚq’*

2
. Let u be a q-adic unit such that 

1),( =aqu
q
β  and let u’ be a q’-adic unit such that 1)'','(

'
=qau

q
β . The classes of 

squares of elements u and aq make the basis of ℚq*/ℚq*
2
 and the classes of squares 

of elements u’ and a’q’ make the basis of ℚq’*/ℚq’*
2
. We define the isomorphism 

tq by '')( qaut
q
= , ')( uaqt

q
= . 

Since –1 is a square in fields ℚq and ℚq’ it follows that every group isomor-

phism mapping the group ℚq*/ℚq*
2
 into ℚq’*/ℚq’*

2
 preserves Hilbert symbols, thus 

in particular for tq defined above we have 
'

))(),((),(
qqqq

ytxtyx =  for all 

x, y ∈ ℚq*/ℚq*
2
. By adding tq to the family of local isomorphisms determined by 

the small self-equivalence ℜ  we finish the construction of small self-equivalence 

1
ℜ . 
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It suffices to show that 
1

ℜ  is an extension of ℜ . Notice that 
1SS
HH ⊂ . In fact, let 

zℚ*
2
 ∈ HS and let ')( zzt

S
= , that means ')( zz

S
=τ . Then z’ℚ*

2
 ∈ HS’. Since z = 1 

in group ℚq*/ℚq*
2
 and z’ = 1 in ℚq’*/ℚq’*

2
, then ')( zzt

q
=  and it follows 

')(
1

zz
S
=τ  in 

1S
G  and consequently zℚ*

2
 ∈ 

1S
H . 

It follows by above argumentation that if zℚ*
2
 ∈ HS , then )()(

1
zz

SS
ττ = . 

Therefore the global monomorphism 
1S

t  for small self-equivalence 
1

ℜ  is an ex-

tension of tS . This finishes the proof that 
1

ℜ  is an extension of ℜ . 

Now we shall show, that the square classes of elements x and aq are in 
1S
H . 

Since x and aq are S1-singular, then by lemma 1.1 we get equality 0),(
1

=aqx
S
β . 

Thus we have 1)),(())(,(),(),(
'

1
====

−

yxyxaqxaqx SSSSSq τβτβββ , hence x = u 

in group ℚq*/ℚq*
2
. By definition of tq we have '')( qaxt

q
= . With the fact 

'')( qax
S
=τ  we get '')(

1
qax

S
=τ  in 

'
1S
G . Now since a’q’ ∈ 

'
1S

E /ℚq*
2
, then 

xℚ*
2
 ∈ 

1S
H . Similarly y and a’q’ are '

1
S -singular, then we have 

1)),(())(,()'',()'',(
''''

==== yxxyqayqay SSSSSq τβτβββ . Therefore 'uy =  in the 

group ℚq’*/ℚq’*
2
 and by the definition of isomorphism tq we have 

)()'(
11
ytutaq

qq

−−

== . On the other hand )(
1
yaq

S

−

=τ , hence we get )(
1

1
yaq

S

−

=τ  in 

1S
G . The element y is S-singular, thus it is S1-singular too, hence aqℚ*

2
 ∈ 

1S
H . As 

a consequence we get the inclusion ∪
S
H {xℚ*

2
, aqℚ*

2
}

1S
H⊂ . 

By definition of elements x, aq it follows that xℚ*
2
 ∈ ES/ℚ*

2
 \ HS and 

aqℚ*
2
 ∉ ES/ℚ*

2
, hence 2dimdim

1
+≥
SS
HH . The set S1 was constructed by add-

ing one prime number to the set S, thus dim 
1S

E /ℚ*
2
 = dim ES /ℚ*

2
 + 1. Finally we 

get inequality def
1S
ℜ = dim 

1S
E /ℚ*

2
 – dim 

1S
H ≤ (dim ES/ℚ*

2
 + 1) –(dim HS + 2) = 

= dim ES/ℚ*
2
 - dim HS –1 = def

S
ℜ - 1= 0. 

This finishes the proof of regularity of the rational small self-equivalence 
1S
ℜ . 

 

Theorem 2.4. For every subset A ⊆ IP3 there exists a rational self-equivalence 

(T,t) such that induced local isomorphism tq : ℚq*/ℚq*
2
 → ℚT(q)*/ℚT(q)*

2
 is simple 

(i. e. it fulfills condition tq(qℚq*
2
) = T(q)ℚT(q)*

2
) if and only if q ∈ A. 

 

Proof. The rational self-equivalence will be constructed on some fixed small ra-

tional self-equivalence defined on the set }2,{∞=S  by adding suitable prime 

numbers. On each step of construction we have to control local isomorphisms as-
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sociated to prime numbers from IP3. If starting small-equivalence is not regular, 

then by lemma 2.3 it can be extended to a regular small self-equivalence on the set 

S enlarged with one prime number from the set IP1. The small self-equivalence 

obtained in such a way we denote by )}{,,(
0000 SpptTS
∈

=ℜ . 

Assume that after m-th step we get a regular small self-equivalence 

)}{,,(
mSppmmm tTS
∈

=ℜ . 

Step A. Let q be the smallest prime number such that 
m

Sq∉ . If q ∈ IP1, then by 

lemma 2.2 there exists a prime number )('
mm

STq∈  such that with the proper 

choice of local isomorphism tq the extension 
1+

ℜ
m

 of the small self-equivalence 

m
ℜ  determined by q, q’ and tq will be a regular small self-equivalence. 

If q ∈ IP3, then by lemma 2.2 
m
ℜ  can be extended to some small self-

equivalence 
*
ℜ  with any choice of local isomorphism tq. Therefore if q ∈ A, then 

we assume that tq is a simple local isomorphism and in the other case we choose 

a skew local isomorphism for tq. If the obtained extension is regular, then we take 

*1
ℜ=ℜ

+m
 and we go to the next step. If the defect of small self-equivalence 

*
ℜ  

equals 1, then by lemma 2.3 by adding suitable chosen prime numbers q, q’ ∈ IP1 

we get some regular small self-equivalence, which we denote by 
1+

ℜ
m

. 

Step B. We proceed as before with small self-equivalence inverse to 
1+

ℜ
m

, 

which we denote )}{,','('
''

'

' Spp
tTS

∈
=ℜ . We choose the smallest prime number 

'' Sq∉ . As previously if q’ ∈ IP1, then adding q’ and properly chosen prime number 

q ∈ IP1\T’(S’) to 'ℜ  and suitable local isomorphism we get regular small self-

equivalence ''ℜ . 

If q’ ∈ IP3\S’, then there exists a prime number q ∈ IP3\T’(S’) which for any 

local isomorphism qqq GGt →
'

'

'
:  gives the extension of small self-equivalence 'ℜ  

with a defect equal to 1. Similarly as before we choose a simple local isomorphism 

if q ∈ A and we choose a skew isomorphism in the other case. If the obtained 

extension is not regular, then by adding properly chosen prime numbers from IP1 to 

the sets S’ and T’(S’) we get a regular small self-equivalence. Regular small self-

equivalence ''ℜ  obtained in this step is an extension of small self-equivalence 

inverse to 
1+

ℜ
m

. The small self-equivalence inverse to ''ℜ  we denote by 
2+

ℜ
m

 

and go to step A. Of course the small self-equivalence 
2+

ℜ
m

 is an extension of 

1+
ℜ
m

. 

Continue this procedure we get one-to-one bijection of the set IP into itself. In 

order to define an automorphism t of the group of square classes ℚ*/ℚ*
2
 notice 

that every regular small self-equivalence )}{,,(
mSppmm tTS
∈

 defines isomorphism 

mSmS
Et : /ℚ*

2
 →

'
mS

E /ℚ*
2
 preserving Hilbert symbols. Every nonzero rational 
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number a is a finite product of prime numbers with integer exponents, hence 

mS
Ea∈  for some m ∈ ℕ. It suffices to assume that t(aℚ*

2
) = 

mS
t (aℚ*

2
). It is ob-

vious that the value of t(aℚ*
2
) does not depend on the choice of m. In fact, assume 

that 
1m

S
Ea∈  and 

2m
S

Ea∈ . We can assume that 
21
mm ≤ . Then 

21 mSmS
EE ⊆ and 

by the fact that 
2m

St is an extension of 
1m

S
t we have 

2m
St (aℚ*

2
) = 

1m
S
t (aℚ*

2
). 

We have shown that the pair ),( tT  is a rational self-equivalence. 

 
Theorem 2.5. The group of strong automorphisms of Witt rings of rational 

numbers is uncountable. 

 

Proof. It known (as follows from [1], [3] and [7]) that there exists one-to-one 

correspondence between rational self-equivalences and strong automorphisms of 

Witt rings (comp. [1],[3] and [7]). On the other hand every rational self-

equivalence uniquely determines the set of this prime numbers with simple local 

isomorphisms. Since every subset (from the uncountably family of subsets) of IP3 

is a set of prime numbers, which induces simple local isomorphisms, hence the 

group of strong automorphisms of Witt ring W(ℚ) is uncountable. 
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