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Abstract. We use the notion of rational self-equivalence which is a special case of Hilbert-
symbol equivalence of fields, where both fields are considered to be the field Q of rational
numbers. We define a small self-equivalence of the field Q as a special case of small
equivalence of fields - a tool for constructing Hilbert-symbol equivalence of fields. We shall
show, that one can choose initial sets of prime numbers and then control the processes of
extending of small self-equivalence such that uncountable many rational self-equivalences
can be constructed. The final conclusion is the corollary deciding that the group of strong
automorphisms of Witt ring W(Q) of rational numbers is uncountable.

Introduction

In this paper we shall show, how uncountalbly many strong automorphisms of
Witt ring W(Q) can be constructed.

We will use the notion of Hilbert-symbol equivalence of fields considered in
[1], [2] and [3]. The ideas contained in these works are the base of our construc-
tions. The restriction to the field Q of rational numbers allows us to simplify many
details, therefore instead of frequent reference to literature we try to present the
solution of the problem in the most complete way. In this section we shall outline
the notions and facts which will be used in the paper. We use properties and facts
from number theory, which can be found in [2], [4], [5] or [6].

Consider the field Q of rational numbers. Let IP denote the set of prime num-
bers together with the symbol 0. In the follow we consider its two subsets:

IPi={pelP\ {0} :p=1(mod4)}, IPs={pelP\{w}:p=3(mod4)}.

For each prime number p there exists a completion Q, of the field Q with respect
to p-adic valuation v, called the field of p-adic numbers. Moreover we assume that
Q.. =R is a completion of Q with respect to usual absolute value (see [4]). Let ¢ be
an automorphism of the group of square classes 7: Q*/Q* — Q*/Q*
and let 7 be an invertible map 7 : IP — IP preserving Hilbert symbols in the sense
that (a,b), = (#(a),/(b)), for all a,b Q*/Q** and for all p € IP. The pair of maps
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(T',t) we will call the Hilbert-symbol rational self-equivalence or shortly just ra-

tional self-equivalence. The notion of rational self-equivalence is a special case of
a more general notion of Hilbert-symbol equivalence of fields, where the prime
numbers are replaced by prime ideals of global fields (see [2, 3]).

Two number fields have isomorphic Witt rings of quadratic forms if and only if
there is a Hilbert-symbol equivalence between them (comp. [3]). Namely the bijec-
tion ¢ fulfilling the above conditions induces a strong isomorphism of Witt rings.

Constructing of Hilbert-symbol equivalence between Witt equivalent number
fields is not an easy problem. The task of defining maps between infinite sets is
difficult since there is no method of doing this in a finite number of steps. In [3]
the authors reduced this problem to the problem of constructing so called small
equivalence, which requires defining maps between finite sets of prime ideals. For
more details the reader is referred to [3]. We use these ideas in order to construct
the set of rational self-equivalences. There was shown in [7] that the set of rational
self-equivalences is infinite and the effective construction of rational self-
equivalences was presented. In this paper we shall prove that the set of rational
self-equivalences is, in fact, uncountable.

Let p and g be two elements in the set IP. Every group isomorphism
to : Q,*/Q,** — Q,*/Q,** preserving Hilbert symbols will be called local isomor-
phism. The local isomorphism 7, is an isomorphism of quaternionic structures of
local fields @, and @, (for more information about quaternionic structures and
their isomorphisms see [8, 9]). If p and ¢ are prime numbers, then the local iso-
morphism £, : Q,*/Q,** — Q*/Q,* is called tame if v, (ti,i(X)) = vy(x) (mod 2).
It is well-known that if the prime numbers p and ¢ are equivalent to 3 modulo 4,
then —1 is not a square in fields Q, and Q, and every local isomorphism maps —1
to —1. In this case every local isomorphism is tame. It is easy to notice that exactly
two local isomorphisms exist for such a prime numbers p and ¢. The first one ful-
filling #,,4(p) = g we call simple local isomorphism and the other one ¢,,(p)=—¢g
we call skew local isomorphism.

By [3] p. 376 it follows that the rational self-equivalence (7.f) determines the
family of local isomorphisms 7, : Q,*/Q,*” — Qy»)*/Q,*” fulfilling the condition
1,(aQ,*?) = 1(a)Qyg)*’.

Let S ={p,,....p,} be any finite subset of IP containing 2 and . Let us fix that

p, = and p, =2 . We define the set of S-singular elements as follows:
Eg={x € Q*:v,(x) =0 (mod 2) forevery p ¢ S}

Notice that £y is a subgroup of the multiplicative group of the field Q containing
all squares of non-zero rational numbers. Therefore the quotient group EJ/Q*” is
a subgroup of the group of square classes Q*/Q**.

For any element p € IP the group G, = Q,*/Q,* (of exponent 2) can be viewed
as a vector space over the two-element field IF, and the Hilbert symbol determines
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non-degenerate bilinear form £, : G, x G, — IF; such that (a,b)p =(- l)ﬁ P(@) For

given finite subset S — IP we create a bilinear space (Gg, ), where

Gy = HGp - H Qp*/Qp*z ﬁs([ap]peS’[bp]peS):Z'Bp(ap’bp)'

pes pesS peS

The space (Gg.f) is an orthogonal sum of non-degenerate bilinear subspaces,
hence it is also non-degenerate.

For every p € IP the natural imbedding of the field Q in @Q, induces the group
homomorphism i,: Q*/Q* — Q,*/Q,** which is surjective. For given finite set
S = {pl,...,pn}c IP we get the diagonal homomorphism diags : Q*/Q** — Ggde-
fined by diagy(aQ*’) = [i,(a)..... ip(a)] = [aQ]; ..., aQ; ] for all a € Q.
In order to simplify the notation the rational number a will be often identified with
its class of squares aQ** and we will use the notation a =diagy(aQ*?). The re-

striction of the homomorphism diagg to the set of square classes of S-singular ele-
ments we denote by .

Lemma 1.1. If S = {oo,2,p3,...,pn}c IP, then

{-1Q*, 2Q*, p:Q*°, ... .p,Q**} is a basis of the space EJQ**.

dim(EgQ**) =S

is is a group monomorphism.

dim Ggs=2|S].

The subspace i(EJQ*”) is equal to its orthogonal completion in the linear

space (GS,ﬂS )

Uk o~

Proof. By the definition of the set Ey it follows that prime numbers which are not

in § can appear in decomposition of x only with even exponents. Let
2k3+e 2kp+ey 21 2/
gl 2k +e 3+te3 ntén 1 m .
x=(=1)12%2*2 p D, ¢ --q, Where g¢,q,,....q,¢Sare prime

numbers, k;/; € Z and ¢; € {0,1} be a canonical decomposition of any nonzero
rational number x. Then x@** = (=1)12°2 p&3 ... p" Q**. Hence the elements of
the group EJQ* are uniquely represented by integers of the form
( 1)81282 ---p,". In particular the elements -1Q*%, 2Q*, ..., psQ*, p,Q*
create a basis of linear space EJQ** over IF, and dim EJQ** = |S]. This finishes
the proof of 1 and 2.

3. If x € ker ig, then x is a square in each p-adic field for p € S and it follows
that x>0 since the squares in the field Q,=IR are positive numbers and
v, (x)=0 (mod 2) for prime numbers in S. It shows that x is a product of prime
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numbers with even exponents, hence x is a square of a rational number. Therefore
ker ig= {Q**}.
4. It suffices to notice that dimGg = Zdim G,=1+3+2(n-2)=2n since

peS
dim G,, = dim R*/R** = 1, dim G, = dim Q,*/Q,** =3 and dim G,=dim (D,,”‘/(D,,”‘2 =
= 2 for odd prime numbers p.

5. Letx, y € Es. By Hilbert reciprocity law H(x,y)p =1 we get

pelP
Ly, = e, .
pes pelP\S

For every p € IP\ S the elements x, y are p-adic units, hence (x,)),= 1. Therefore

(1)’ (xy) _ H(_ l)ﬁp(x,y) _ H(x’ y)p 1

peS peS

Thus we get Si(x,y)=0. It follows that for F'= is(E§/Q**) we have F c F*and

consequently dim F <dim F*. Since iy is a monomorphism, hence dim F=
=dim EJ/Q** = |S]. Tt is well-known that the bilinear space (Gg,f) is non-

degenerate, thus by the orthogonal complement theorem we get dimF* =
= dimGg —dim F = 2|S|—|S|=n. Since the subspaces F and F~ have the same

dimensions and one of them is contained in the second one, thus F = F*.

Definition 1.2. A small self-equivalence of the field Q defined on the set S is

atriplet R=(S,7.1{,} ,.5) where

1) S is a finite subset of IPand 0, 2 € S;

2) T: S — IPis an injection;

3) {t,} s is a family of local isomorphisms #, : Q,*/Q,** — Q) */Qyp)*” pre-
serving Hilbert symbols, i.e. (a,b)p = (tp(a ,l, (b)),[,(p) for all a,b € Q,*/Q,*’.

The above definition of small self-equivalence imposes some restrictions on the
map 7. Namely 7(o0) = o, since p =« is the only element of the set IP such that
dim Q,*/Q,** = 1. Similarly 7(2) =2, since p =2 is the only element of the set IP
such that dim @,*/Q,** = 3. Moreover by preserving the Hilbert symbol by the
isomorphism 7, : Q,*/Q,** — Qy,)*/Qy,*” it follows that the quaternionic struc-
tures of the fields @, 1 Qy, are isomorphic, what holds if and only if 7(p) = p (mod
4). Conversely, if the injection 7: S — IP fulfills these conditions, thus for any
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choice of local isomorphisms 7, : Q,*/Q,** — Qy,)*/Qy,)* for p € S the triplet
(S.7.,{,} c5) 1s a small self-equivalence.

Let us denote S' = 7(S). By injectivity of the map 7 it follows that the sets S and
S" have the same cardinality. A small self-equivalence defined on .S induces group
isomorphism 7 : Gy — G which is a product of the family of local isomorphisms
determined by the equivalence. If [a,....2,]e Gy, then z((e.....,1)=

= [t (@)t (@, )]. Any small self-equivalence determines two sets

Hy= {a € Es/Q* : 15° is ()€ is(Ey /Q*))} < EJQ*,

Hy = {y € E¢ Q% : iy ° ig(y)€ is(Es/Q*")} < Es /Q*” .

. .. . .—1 .
Since the maps is, is;, 75 are monomorphisms, then g =ig o7 i Hg Mmaps Hs

isomorphically into Hs. The situation is presented on the following diagram
i
HyC Es/@¥ ———— G

ts X

l¢

Lemma 1.3. For any small self-equivalence defined on the set S the following
conditions are equivalent:

1. Hy= EgJQ*°.

2. Hy = E5 /Q*°.

3. Tg ° lg(Eg/Q*z) = lS(Eg/Q*z)

Proof. 1t suffices to notice that by lemma 1.1 dim iy(Eg /Q*z) =dim ig(Es /Q*z),
because the sets S and S’ are equinumerous.

If at least one of the conditions of the above lemma 1.3 is fulfilled, then the
small self-equivalence R will be called regular. In the other case we say that
small self-equivalece is irregular and the number def R = dim E¢Q** — dim Hg we
call defect of small self-equivalence. If the small self-equivalence defined on the
set S is regular, then 7 is a group isomorphism between E¢/Q** and Eg/Q** and the
equality 7 oig =i otg holds.

Definition 1.4. We say that the small self-equivalence R, = (Sl,Tl,{tS)} ) is an

PES]
extension of the small self-equivalence R =(S,T.{t,} ,.5) if
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) ScsS;

2) the map 77 is an extension of the map 7

3) 1, =t forall peS;

4) Hy < Hy, and the global isomorphism /g, is an extension of the isomorphism .

We say that the extension R, :(Sl,Tl,{tg)} ) of the small self-equivalence

PES)

R=(S.T,{,} ,.5) is determined by g¢,q'e€IP and the local isomorphism
t,: Q*Q* — Q,*/Q,* where S,=SU{q} and T, is an extension of T such

that T(q) = ¢ and {1} g, ={1,} ,es UL, } -

We shall show that any regular small self-equivalence defined on arbitrary fi-
nite subset of IP containing 2 and o can be extended to a rational self-equivalence.
Next we will notice that the map 7 : Q*/Q** — Q*/Q** obtained in such a con-
struction induces a strong automorphism of the Witt ring W(Q) of rational num-
bers. We shall show how to control the construction in order to get uncountably
many rational self-equivalences or uncountably many strong automorphisms of
Witt ring W(Q).

1. The construction of rational self-equivalences

Lemma 2.1 Assume that S P is a finite set, ©,2 € Sand a e Gg. Then there

exists a prime number q ¢ S and an element c € Ey such that diag(cq@Q*%) = a..

Proof. Let a,...,a, be integers, which are not squares and let o = [altD*2

P
* )
aQ py 3o a,Q on

theorem it follows that there exists a natural number b such that b = a,a, (mod 16)

|. We can assume that g, € {l,-1}. By the Chinese remainder

and b=aa, (mod p}) for i=3,...,n. Let us denote by M =(4p,---p,)* and
d =ged(b, M) . Then the numbers % and & are coprime and by Dirichlet’s theo-

rem it follows that the arithmetic progression (%-ﬁ-k%) ken contains infinitely

many prime numbers. Let g be one such number coprime to M, thus g ¢ .S . Let us

denote a =a,dq . It is obvious that a = ;b (mod M), hence a =ab (mod p,z) and
gd =b(mod M) thus by transitivity of congruence relation we have

gd = a,a, (mod p?) and consequently a,dg=a, (mod p}). Assume that c = a,d.
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Therefore we have c¢q=a, (mod p). Since d|M hence d € E, and it follows that

the element ¢ = ayd is in Es.
Notice that the numbers cg and g, are both positive or both negative. Moreover

vy(a,)=v,(cq) <2, 4<v,(cq—a,) and v, (a)=v,(cq)<2<v,(cq—a), then
by Hensel's lemma it follows that cgQ ;2, =aQ’? for i=2,...,n. Therefore we

Pi
get if(cqQ**) = a.. [

Lemma 2.2. For any regular small self-equivalence R=(S,T.,{t,},.s) and for
any prime number q € IP\S there exists such a prime number q'¢ S' that for any
tame local isomorphism t,:G, — G, the extension of the small self-equivalence
R determined by elements q, q', t, has a defect not bigger than 1. Moreover, there
exists a tame local isomorphism t;:G,— G, such that the extension of self-
equivalence R determined by elements q, q', t; is a regular small self-

equivalence.

Proof. Let us fix §’=17(S) and Sleu{q}. If R is a regular small self-

equivalence, then 7gci; =i, ofy. Using lemma 2.1 there exists a prime number

q'¢S' and an integer a € E, such that a_q': TS(;). We define S',= S'u{q'} and
Ti(p)=T(p) for peS and T,(q)=¢q'. Take any element xe E . Since R is

regular, then there exists an element x'e Eg such that zg (x)=x'. Since
i (x) = [;, i,(x)] € i (Eg, ), then according to lemma 1.1 S, ([)_c, i (x)],[g, i (q)]):
= Bolvg)+ B, i, (x).i,(@))=0.  Similarly i () =¥, (D] (B, hence
according to lemma 1.1 Bs{ ([x', iqv(x')],[q',iq,(q')]): ﬂs,(x’,q')Jr By, (iq,(x'),iq,(q')):
= 0. Using the first formula and the fact that 7, maps isometrically the space
(Gy. ) into (Gy fiy) we get B,(x.q) = fs(v. )= B e (0.7, @)= By ¥ aq).
Using again lemma 1.1 for elements x',a € E¢ and the second formula above we
get ,BS,(x',aq'): ,st(x',a)Jr ,Bsy(x', q'): ,st(x',q'): ﬂq,(x', q'). In this way we have
shown that

B,(x.q)=B,(x".q). (1)

In particular for x=-1 we have f,(-1,9)=f,(-1,q"), which means (*71): (*71),

which is equivalent to g =¢'(mod 4). The last fact implies existing the local iso-
morphisms of groups of square classes of g-adic and ¢ -adic fields (Dq"‘/(Dq"‘2 and
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Q,*/Q,*. Let t,: Q*Q,*—> Q,*/Q,* be any tame local isomorphism. By
definition #, maps g-adic units to g -adic units. Moreover since ¢ is not a g-adic
unit, then 7,(q) € {q',u'q'}. We shall show that g, ¢ and 7, determine the extension

R, of the small self-equivalence R . We have to show, that Eg Q¥ =Hsc H 5

Since R is regular, then the global isomorphism 7y determined by R is defined
on whole group Eg /Q**. Take any element x € Hy = Eg /Q**. There are two cases

possible: 1. if 7,(¢) =¢", then ,Bq(x, q):ﬂq,(tq(x),tq(q)):,Bq,(tq(x),q') and 2. if
(@) =g, then B (rg)=B,0,0.0, @)= 8,000 q)= B, 0.u)+
+,Bq,(tq(x),q'): ﬂq,(tq(x),q'), because 7,(x) and u’ are g ’-adic units. Therefore
ﬂq,(tq(x),u'):O. Using the formula (1) for x'=t¢(x) in both cases we get
ﬂq,(tg (x),q'): ﬂq,(tq (x),q') and consequently 7¢(x)=7,(x) in the group
qu*/Qq»*z. Therefore we have shown that TSl(iSl(x)):isi (ty(x)) eig(Eys /Q*?),
hence xe Hg. The defect of rational small self-equivalence R, is
def(R,) = dim £y /Q** — dim H, <dim Eg /Q** — dimH =| 5 |- | S|=1.

Now we will show that for properly chosen local isomorphism we will get
a regular extension of small self-equivalence R. Assume that
(Dq*/(Dq*2 ={Lu,q,uq} and (qu”‘/@q»*2 ={Lu',q".,u'q'}. We define the local iso-

morphism 7, : Q,*/Q,*— Q,*/Q,* by to(u)=u" and 1;(q) =aq'. The remain-
ing values of #; are uniquely determined: #;(1) =1 and ¢, (uq) = u'aq'. We can see
that 77 is tame. If a is a square in @, then ¢/ is a simple local isomorphism, in the

other case #; is a skew local isomorphism.

It is easy to notice that E /Q** = E¢/Q** U qEs/Q**. In order to show that the

small rational self-equivalence R, determined by 9% and the elements ¢, " and ¢,

is regular it suffices to check if g€ H

51> that means if the extension 7 of global

isomorphism #; can be defined for element quSl/Q*z. Easy calculation
3 iy @)= 7 (0.91)=lrs @.6;@)|ag.aq =i (ag)ei (B)  shows  that

t(q) = aq'. In general 74 (xq°) =1(x)(aq") forall xe Eg and e e {0.1}.

Lemma 2.3. For every rational small self-equivalence R=(S,T.,{t,},.5) with

defect equal to 1 there exist prime numbers q, q’€ P and a local isomorphism
t,:G, > G, such that the extension of R determined by q, q’, 1, is a regular

small self-equivalence.
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Proof. Let us denote by S’ = 7(S). Let #; be a fixed global monomorphism
determined by R . According to hypothesis dim Es/Q** — dim Hs =1, hence there

exists S-singular element x such that 7, ()_c) ¢ig(Eg /@*%). By lemma 1.1 it follows

that is(Es /Q**) equals to its orthogonal completion, hence every element, which
does not belong to this set can not be orthogonal to all its elements. This means

that there exists S -singular element y € Q* such that [ (7 (J_C),;/) =1.

For any ze Egwe have [ (r4(x),74(2)) = B¢(x,2)=0, hence y¢ Hy.. Next we
have (75" (1),x) = Be (3. 75(x)) =1, thus 75'(») 2 is (Es /Q*’). By lemma 2.1
there exists a prime number ¢ ¢ .S and the number a € E, such that a_q = z'gl(;).
Similarly there exists a prime number ¢'¢ S'and the number a'e E., such that
a'_q':rs()_c). We define two sets S, =Su{g} and S,'=S"U{q'}. First we notice
that if zQ** € Hy, then z € Qq*z. In fact, since z and aq are S;-singular elements,
therefore by lemma 1.1 it follows that ,BS(Z,a_q):O and consequently we get
B,(z.aq) = By(z.aq) = By(z.75' () = Be(75(2),») = 0. The last equality follows
from zg (;),; gig(Es /@*?). Since z is g-adic unit modulo @**, hence by equalities
v,(ag)=1 and f,(z,aq)=0 it follows thatz € Qq*z.

Analogously taking any S -singular element z’ such that z’Q** € Hy and using
equalities f3,(z',aq') = ,BS,(;, T (;)) = L (T;I(Z'),)_C) =0 we find that z’ € Qq*z.
Since —le Hg and —le Hg., thus in particular it follows that -1 € @,** and
—1 € @, *. This shows that ¢, ¢’ € IP,.

We extend the small self-equivalence R to equivalence R, =(S,,7,.{t,} .5 ) by
extending bijection 7" to the set S; and setting 7;(¢)=g'. It remains to define
a local isomorphism 7, : Q,*/Q,*— Q,*/Q,**. Let u be a g-adic unit such that
B,(u,aq)=1 and let u’ be a g ’-adic unit such that S.(u',a'q") =1. The classes of
squares of elements u and ag make the basis of @,*/Q,* and the classes of squares
of elements u’ and a’q’ make the basis of Q,*/Q,*’. We define the isomorphism
lyby t,(uy=dq', t,(aq)=u'".

Since —1 is a square in fields @Q, and @, it follows that every group isomor-
phism mapping the group @Q,*/Q,*’ into @, */Q, ** preserves Hilbert symbols, thus
in particular for 7, defined above we have (x,»), =(, (x).;,(»)), for all
X,y € Q*/Q,*. By adding ¢, to the family of local isomorphisms determined by

the small self-equivalence R we finish the construction of small self-equivalence
R,.
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It suffices to show that R, is an extension of R. Notice that H; < H, . In fact, let

zQ** e Hy and let t(z) = z', that means rS(E) =7'. Then z’'Q** ¢ Hs. Since z =1
in group Q*Q,* and z’=1 in Q,*/Q,*’, then t,(z)=z" and it follows

() (z)=Z"in G, and consequently Q¥ € Hy.

It follows by above argumentation that if zQ** € Hy, then Ty, (2) =174(2).
Therefore the global monomorphism 7, for small self-equivalence R, is an ex-
tension of 7. This finishes the proof that R, is an extension of ‘R.

Now we shall show, that the square classes of elements x and aq are in Hy.
Since x and aq are S;-singular, then by lemma 1.1 we get equality /[, (;,a_q) =0.
Thus we have £, (x,aq) = By (x,aq) = fy(x, 75" (») = By (75(x), y) =1, hence x = u
in group Q*/Q,**. By definition of #, we have 1,(x)=da'q'. With the fact
T (x) :a'_q' we get 7 (;) :a’_q' in GS,. Now since a’q’ € ES, /Qq*z, then

S1 o1
xQ* € Hg. Similarly y and a’q’ are S -singular, then we have
By (»,dq") = Bs(¥,a'q") = By(y,75(x)) = Bs:(75(x),y) =1. Therefore y=u" in the
group (qu”‘/(D,,>l<2 and by the definition of isomorphism ¢, we have
aq = t;l(u') = t;'( ¥). On the other hand a_q = r;l(;), hence we get ag = z'gll( y) in
Gy, The element y is S-singular, thus it is S;-singular too, hence aqgQ* ¢ H 5 - As
a consequence we get the inclusion H U (xQ*, agQ**} Hg,.

By definition of elements x, ag it follows that xQ* € EJQ**\ Hy and
aqQ** ¢ EJ/Q**, hence dim H 5, 2dim Hg +2. The set S; was constructed by add-

ing one prime number to the set S, thus dim Ej /Q** = dim Eg /Q** + 1. Finally we
get inequality def R = dim Eg /Q** —dim H < (dim EgQ*’ + 1) ~(dim Hy+2) =
= dim EgQ*’ - dim Hy—1 = def R - 1=0.

This finishes the proof of regularity of the rational small self-equivalence R, .

Theorem 2.4. For every subset A C |P; there exists a rational self-equivalence
(T1) such that induced local isomorphism t,: Q*/Q** — Quy*/Qu)*" is simple
(i. e. it fulfills condition t,(qQ,**) = T(q)Qu,*’) if and only if ¢ € A.

Proof. The rational self-equivalence will be constructed on some fixed small ra-
tional self-equivalence defined on the set S ={x,2} by adding suitable prime

numbers. On each step of construction we have to control local isomorphisms as-
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sociated to prime numbers from IP;. If starting small-equivalence is not regular,
then by lemma 2.3 it can be extended to a regular small self-equivalence on the set
S enlarged with one prime number from the set IP;. The small self-equivalence
obtained in such a way we denote by R, =(Sy.7;.{¢,} es, )-

Assume that after m-th step we get a regular small self-equivalence
R, =S, T 5 pes,, )-

Step A. Let g be the smallest prime number such that g ¢ S,,. If ¢ € IP;, then by
lemma 2.2 there exists a prime number ¢'€7,(S,) such that with the proper
choice of local isomorphism ¢, the extension R,,,, of the small self-equivalence
R, determined by g, ¢’ and 7, will be a regular small self-equivalence.

If ¢ €IP;, then by lemma 2.2 9, can be extended to some small self-
equivalence R. with any choice of local isomorphism #,. Therefore if g € 4, then
we assume that 7, is a simple local isomorphism and in the other case we choose
a skew local isomorphism for #,. If the obtained extension is regular, then we take
R, =NR. and we go to the next step. If the defect of small self-equivalence R.

m+
equals 1, then by lemma 2.3 by adding suitable chosen prime numbers ¢, g’ € IP;
we get some regular small self-equivalence, which we denote by R, ;.

Step B. We proceed as before with small self-equivalence inverse to R

m+1>

which we denote R'=(S",T ',{t'p,} p,eS,). We choose the smallest prime number

q'¢ S'. As previously if ¢’ € IP,, then adding ¢’ and properly chosen prime number

q € IPN\T’(S’) to R' and suitable local isomorphism we get regular small self-
equivalence R'".
If ¢’ € IP;\S’, then there exists a prime number ¢ € IP;\T’(S’) which for any

local isomorphism t;], :G, — G, gives the extension of small self-equivalence R’

with a defect equal to 1. Similarly as before we choose a simple local isomorphism
if ¢ € A and we choose a skew isomorphism in the other case. If the obtained
extension is not regular, then by adding properly chosen prime numbers from IP; to
the sets S and 77(S’) we get a regular small self-equivalence. Regular small self-
equivalence R'' obtained in this step is an extension of small self-equivalence
inverse to R The small self-equivalence inverse to R'' we denote by R

m+1*

and go to step A. Of course the small self-equivalence ‘R,,,, is an extension of
R

m+2

m+1-
Continue this procedure we get one-to-one bijection of the set IP into itself. In
order to define an automorphism 7 of the group of square classes Q*/Q* notice

that every regular small self-equivalence (S,,.7,.{7,} ., ) defines isomorphism

ts, Eg /Q*2—>ES;” /Q** preserving Hilbert symbols. Every nonzero rational
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number a is a finite product of prime numbers with integer exponents, hence
ae Eg for some m € IN. It suffices to assume that H(aQ**) = I, (aQ*?). It is ob-

vious that the value of #(aQ**) does not depend on the choice of m. In fact, assume
that ae ESm1 and ae Esz. We can assume that m; <m,. Then ESm1 c Esz and

by the fact that tSm2 is an extension of tSml we have tSm2 (aQ**) = tSml (aQ*?).

We have shown that the pair (7,¢) is a rational self-equivalence.

Theorem 2.5. The group of strong automorphisms of Witt rings of rational
numbers is uncountable.

Proof. It known (as follows from [1], [3] and [7]) that there exists one-to-one
correspondence between rational self-equivalences and strong automorphisms of
Witt rings (comp. [1],[3] and [7]). On the other hand every rational self-
equivalence uniquely determines the set of this prime numbers with simple local
isomorphisms. Since every subset (from the uncountably family of subsets) of IP;
is a set of prime numbers, which induces simple local isomorphisms, hence the
group of strong automorphisms of Witt ring W(Q) is uncountable.
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