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Abstract. The Markov network with unreliable queueing systems and a large number of
messages is investigated. The service channels of systems are exposed to random failure,
besides the time of the proper functionality and the time of reconstruction of each channel
of system has the exponential distribution with distinctive parameters. The system of differ-
ence-differential equations of Kolmogorov for the states probabilities is compiled. The
partial differential equation for the probability density function of the vector of states is
deduced. The systems of ordinary differential equations for an average number of messages
and serviceable channels of network systems are received.

Introduction

Let us examine the closed exponential queueing network with the K messages
of the same type which consist of n+1 queueing systems (QS) S,,S,....,S,. The
system S, includes m, identical service channels, izl,_n, and m, =K.

Considering that the service channels of the system S, are absolutely reliable
and in the other systems S§,.S,,...,S, the service channels are exposed to random
failure; besides the time of the proper functionality of each S, system's channel

has the exponential distribution with the parameter S, i = 1,n. After the breakage,
the channel starts to reconstruct immediately. The time of reconstruction also has
exponential distribution with the parameter y,, i=1,n. After servicing in system
S, the message immediately transfers into the system S; with probability p,,

— n —
i,j=0,n, py,, =0, Zp,-J =1, i=0,n. The matrix P :pr. is transition

Jj=0

(n+1)x(n+1)
probability matrix of irreducible Markov chains. If it arrives in the system S,

message finds at least one service channel operable and free from the other mes-
sages it is immediately serviced and the time of service is a random variable with
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the parameter y,, i =1,n. Otherwise the message expects the beginning of service

without restriction on duration of waiting. Let's assume that if the service channel
would fail while completing some message, then after the restoration the interrupt-
ed message will be completed. Disciplines of the message processing in the net-
work systems are FIFO. Assuming that the service time of messages, durations of
serviceable work of channels and restoration time of service channels are inde-
pendent random variables.

Our aim is to receive the system of the differential equations for the average
number of messages and serviceable channels in the network QS at the large val-
ues of K. It should be noted that the presented techniques of the results reception
has been offered for the first time in the works [1, 2] for the exponentional net-
works without the specified features (with reliable QS).

1. The system of equations for the states probabilities

The state of such a network at the moment # could be described through vector
z(1)=(d (1) k(2))=(dy (1).dy (1).nd, (£) Ky (1) Ky () ennsk, (2)). (D)

where d,(r) and k() are the numbers of serviceable channels and the messages

numbers in the system S, at the moment ¢ accordingly, 0<d,(r)<m,,
0<k (t)<K, te€[0,+0), i=Ln. It is obvious that k,(r)=K - k,(¢)is the
i=1

number of messages in the system S, at the moment 7.
Vector z(t) describes 27 - dimensional Markov process with the continuous
time and the definite number of states. Let's consider, that

P(d.k,t)=P(d(t)=d.k(t)=k),

where d =(d,,d,,...d,), 0<d <m and k=(k.ky,...k,), 0<k <K, i=ln.

n

Let's denote I, as n- vector with zero components excluding i, that is equals to 1.
Let's describe the possible passages of Markov process z(t) in the state
z(t+Ar)=(d, k.t + Ar) at the time Ar:

e from the state (d,k,t) the passage is possible with probability

1{%(1@?{, (r)}g[% min(m,. k(1)) + B, d, (1) +7,(m, —d, (1)) |Ar+ o (1):



Investigation of queueing network with unreliable systems and large number of messages 87

e from the state (d Lk —I,,t) with probability

i=1

{ﬂopo, (K—ikl (t)+1JAt+o(At)} 1- Iuoépoj (K_kj (t))+

n

+Z[,uj min(dj (t),kj (t))+ Bd, (t)+]/J (mj -d, (t))]}At+0(At)], i=ln;

J=1

e from the state (d k+ I,,t) with probability

J=1

| 1.pomin(d, (¢). k, (1) +1) At + O(At)]ll —{,uo [K = Zn:k‘, (1) + lj +

+z’;[ pymin(d, (1).k, (1)) + B,d, (1) +7, (m; ~d, (1)) + ,min(d, (). & (1)) +

+Bd,(1)+7,(m —d,(1)) p At +o(Ar) |, i=1,n;

e from the state (d,k +1, - Ij,t) with probability

[,u,.py min(d,. (t), k; (t)+ 1)At+0(At)][l—{,u0 [K—Zn:kj (t)J‘i‘

J=1

n

+ 2 | min(d, (1).k, (1)) + B, (¢)+ 7, (m, —d, (1)) ]+ s min(d, (1), (1)) +

r=1
r#i,

+Bd,(1)+7,(m;—d (1)) + p,min(d, (t).k, (1) +1)+ B,d (1) +

+yj(mj —dj (t)) At+0(At) , Lj=Ln;

e from the state (d —I,.,k,t) with probability

[y, (m,—d, (r)+1)At+o(At)][1 —{ﬂo(lf—ikj (,)]+
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+i[,uj min(dj (t),kj (t))+ Bd, (t)+]/J (mj -d, (t)):|:|At+0(Al)}, i=ln;

J=1

e from the state (d + I,.,k,t) with probability
[,B, (4, (t)+1)At+o(At)][l —{yo (K—ikj (t)]+
+Z[ ymin(d, ()&, (1)) + B, (1) + 7, (m, —d, (1)) |+ 4 min(d, (1) + 1.k, (1)) +

]#’51

+7,(m, = (d, (£)+1)) |Ar+ o(At) p, i=1m;

e from all other states with probability O(At).

Then, the usage of the formula of total probability makes it possible to write the
system of difference equations for the states probabilities

P(d,k,t+At) :ii,u,pu min(d, (), k, (1) + 1) P(d.k+1, = 1.0 )Ar+

i=1 j=1

+,L10[K—Zn:k, (t)+1jP(a’,k—Ij,t)At+
i=1

+Zn: #,pomin(d, (1), k, (1) +1) P(d.k+I,1) At +

i=1

+any, (m,—d, (t)+1)P(d—1j,k,t)At+i,B, (d, (t)+1)P(d +1.k,t) At +

Jj=1 i=1

H[K . (t>j+§y,p,omin<d, (O )+ 27, (m i () +
+i Bd, (t)} At}P(d,k,t) +o(A?),

from which at At —> 0 we receive the system of difference-differential equations
of Kolmogorov for the states probabilities
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ddkt d

Zz;l,pu min(d, (1), &, )| P(dok+1,~1,.6)= P(d.kot) |+

i=l j=1

+ZZ ., | min(d, (1), k,(¢) +1) = min(d, (¢). k (1)) | P(dok+ 1, = T .) +

i=1 j=1

+,LIO(K—Zn:k, (t)J[P(a’,k—Ij,t)—P(a’,k,t)]+y0P(d,k—Ij,t)+

i=1

+z,u,p10m1n d (t , , [P d k+],,t)—P(d,k,t)]+

i=1

+§": 14,90 min(d, (¢). k, (£)+1) = min(d, (£). & (¢)) | P(d e+ 1,.0) +

+Zn:7f(m1 —d, (t))[P(d—Ij,k,t)—P(d,k,t)]+Zn:71P(d—]i,k,t)+
+Zn:ﬂ,d,(r)[P(d+1,,k,t)—P(d,k,z)]+§":ﬂ,.P(d+1,,k,z). )

The solution of this system in the analytical form is generally inconvenient.
Therefore we will consider the important case of the large number of messages in
the network, K >>1. In order to determine probability distribution of the random

vector z(t) , it is convenient to switch to the relative variables, considering vector

f(z):(dl (6) dy(¢)  d, () k(1) k() kn(t)]

. In this case possible values

b 900 b b 90

K K K K K
of this vector at the fixed ¢ will belong to the bounded closed set

n m
G= {(y,x) = (yp Vaseees Vs Xps Xgs ey xn) :ox; 20, Zx, <L 0<y, S?’}, 3)
i=1
in which they place in the nodes of the 2rn- dimensional grid at the distance
8:% from each other. While magnifying K "the charging density" of set G
with the possible components of vector & (t) will increase, and it is possible to

consider, that it has a continuous distribution with the probabilities density
p(y.x,t), and K“P(d,k,t)wp(y,x,t). Therefore it is possible to use the

approximation of the function P(d,k,t), using the relation XK 2”P(a’,k,t) =
= KZ”P(yK,xK,t) = p(y,x,t), (y,x) eq.
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1,b>0
Let denote that e, =¢I,, i=1,n, ¢(b)= 0, b<0

min(b, a+1):min(b, a)+c(b—a) c(b—a) _ amin(b, a)

b b 4
Py “
,b>
thus min(b,a):{z 5 “ . Using the relative variables y, = jl( X, :%, [, :%,
,b<a

i=1,n, expression (4) and that if K —»>o, &€ —> 0, system (2) can be written as
follows:

ap(y,x,t) :iZH:Kﬂ’p’f min(yl,xl)[p(y,x +e; —ej,t)—p(y,x,t)] +

at i=1 j=l

+ZZ/¢,P,J amm y,, ')p(y,x+e, —ej,t)+

i=l j=1 Xi

+K,u0[l—lej[p(y,x—ej,t)—p(y,x,t)]Jr,uO (py,x—ej,t)+

i=l1

+> Kppomin(y,, x,)| p(y.x+e.0) = (pyxt) |+

i=1

u omin(y,, x,
+Zﬂzpfo%)]7(y’x+ent)+
i=1 j

1

+Y Ky, (L= 3)| p(y-e.x.0) = p(y.x.0) |+ Dy, p(y e x.) +
i=1

J=1

2 KBy [ p(y+e.xt)-p(yxt) |+ 2 Bp(yre.xi). (5
i=1 i=1

2. The system of differential equations for expected characteristics

Let's present the right part (5) with the accuracy of term &°. If p( y,x,t) is
twice continuously differentiated at y and x, than

op(v.x.t) &0’ p(y.x.t) 5
x 2 o +o(s?)

1 1

p(y,Xie,-,l‘)Ip(y,x,t)ig

ap(y.x,t) op(y.x.t)

: J
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2 2 2 2
+%(a p(y,x,t)_za p(y,x,t)+8 p(y,x’t)J+0(52)»

2 2
Ox; Ox,0x ox;

ap(y,x,t) . g2 azp(y,x,t)
oy, 2 oy

p(yiei,x,t):p(y,x,t)ig +0(52), i=ln. (6)

Using them and that €K =1, we receive

wz anzn:,u,p,j min(y,. xi)[(ap(y,x, 1) p(y.x, t)j+

P Ox, Ox,

+§[82p(y,x, t) _262p(y,x, t) N azp(y,x, t)]]+

ox’ Oox,0x ; ox*

! [ J

NI Uamm(y,, ’){P(J’,x 1)+ [ap(y’x’f)_ap(y,x,f)}

=1 j=1 Oox; Ox;

+5_22[6210(%)6, H_, o’ p(y.x.1) . o’ p(y.x, t)ﬂ .

ox; Ox,0x ox’

J

u 8 X, 1 o? X, 1
Sora1- 5 |20 22Px) |,

1 i

Ox 2 ox?

1 1

222
+y{p(y’x,t)_gap(y,x,t)+8 0 p(y,x,t)}r

z . op(y.x.1) g0 p(y.x.1)
+iZ=l: lulpio min (yi’ xl)|: ax‘ + 2 axz +

1 1

" omin(y,, x,) op(v.x.t) &0’ p(y.x,1)
D2 s {p(y’x’t)” & 2 ot |

1 1 1

Y, 2 o

0 , X, 0 ,
+Zy{ y,x,1) - P(gy:”)gz p(aixt)}

1 op(y,x,t 562p VX, t
+ZIB:'J/[ (Gy- )"'E gyz )}

n 2
+Zy,(1,-—y,-){ Py 22 P(%xﬁ}
i=1

i=1
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+Zn:ﬂ[p(y,x, t)+8ap(y’x’ ) + =2l t)}FO(gZ).

oy, 2 oy

Thus, the density p(y,x.t) is satisfied with the accuracy within the term &” to
the Kolmogorov-Fokker-Planc equation:

Prx1) —Zn:i(A,-(l)(y)P(y,x, 0) -2 (A% (10 (e ))+

ot o i Ox

553

S 00pe0)+ S X T (8 (9 p )

7] laylay_] i,j=1
where
M ()= — )= By
Ai (y)_}/](ll yl) IBIyI’ (8)
A]-(z)(y:x):Zﬂ]pj/min(yjaxj)+1u0p0/[1_le]’ izl,_l’l, (9)
Jj=1 i=1

* Pijis J#1, Bl(ll)(y):yi(li_yi)-i_ﬂiyi. B(l)(y):() i#
"op -t =i - S

B ()= X, min (v, )+ o o (1—2%}

J=1 i=1

ok p-]-, Jil’ ' | N
Pji :{11pm =i Bgz)(y,x):—,Lzlpy.mln(yl,xi)’ i), i=ln.

As the density p( Vv, x,t) satisfies the Kolmogorov-Fokker-Planc equation and

A,.(])(y), A,(z)(y,x) piecewise linear functions on y, x, according to [3], the
d, (¢ k(¢ —

mathematical expectations w, (z‘):M {%}, n, (t):M {%}, i=1,n, with

the accuracy within the terms of infinitesimal order 0(82) are defined from the

systems of the equations

dwcz{_t(f):Ap)( () =7t ~w, (1)) - Bow,(¢), i=Tm, (10)
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dn;-{ft) AP (w(0)n(1)) =Y, min(w, (¢).n, (1)) + st Py, [ Zn (¢) j (11)

Jj=1

The right hand sides of system (11) are continuous piecewise linear functions.
By segmentation of phase space and obtaining solutions of system (11) in ranges
of right hand sides linearity it is possible to solve the whole system.

Let Q(r)={1,2,...n} - be set of vector n(r) component indices. Let's divide
Q(r) into two disjoint sets Q, () and Q, (« )

Qo(t)z{i:w(t)<n.(t)£1} ):{] 0<n()<wj(t)}.

Each partitioning specifies disjoint regions G, ( ) in the set

$r0

()= (1) (00

such that:

271

0<n (t)<w (t)]eQ Zn (t <1} r=1,2,..2", UGT(I):
=1
Then system of equations (11) of explicit form for each region G, (t) is:

t N n )
):Zolujpj’ Z /ujpjz +/u()p01[ _Zlni(t)Ja lzla 5 (12)

where Z 0= Z R Z = Z . The solution of the system of equations (10), (12)
JeQo(1) Je(1)

makes it possible to obtain an average relative number of messages and serviceable

channels at any QS of queueing network. At the region A: Q,(r)={D},

Q,(1)={1.2.....n}, when queues in average at the system are absent, systems (10),
(12) look like
aw, (t)
dt

=78 =w ()= Bw (1) =7, = (7, + B)w, (1) (13)

dnd() Z ,ujpj,n (t)+,uop0,[ —IZn]:nl(t)j. (14)
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3. Example

Let’s consider the closed exponential queueing network with unreliable service
channels and central QS, n =4, K =1000; m, =11, m, =9, m; =10, m, =15. The
intensity of arrival of messages from outside medium (system S) is 1, =5. Inten-
sity of service of messages in service channels of QS are g =1.5, u, =1,
My =14, p,=009. Averages of duration of serviceable work for each service
channel of QS B' =1.65, 3" =1.41, ' =1.4, ;' =1.31 are equal accordingly.
Averages of duration of reconstruction of faulty service channels of QS are

=131, ;' =09, y;' =1.2, y,' =1.65. Probabilities of transition of messages:
Po1 = Pox = Pos = Poa = Pro = Poo = P30 = Pao = /4, Pu=Pu=Du =34 pu=1/2,
Pu = Py3 =1/8, other p,; =0, i,j=0,4. At the initial moment of time ¢=0:
n,(0)=0, w,(0)=m;, and min(w,. (1).m, (t)) =n(t), i= 1,4. Then the system (14)

is a system of non-homogeneous linear differential equations and can be written in
the vector form

dn(t)
dt

=An(1)+0(1), (15)

where n' (¢)= (nl (1).m, (1), (t),) - vector of average relative number of mes-

sages in each of QS. The decision of system (14) can be found as
1
n(t)=e"n(0) +IeA’ ’ Q(T
0

Analytical expressions for change of average relative number of messages in
network systems look like

n, (1) =0.002+0.0031e™" % —0.003¢>>"* —0.0017¢™" " +0.0005¢ """

>

n, (1) =0.0012+0.0002¢ "% —0.0027¢ " +0.0001e™"*** +0.001 1%

>

ny(1) =0.0009 +0.0004¢ ™% —0.0003¢ " +0.0019¢™"*1" +0.0002¢™"***"

>

n, (1) =0.0053-0.0039¢"*** —0.0007¢ """ —0.0003¢™"**" —0.0004¢ "%

When these expressions are multiplied on K we will receive expressions for an
average of messages in QS N,(¢)=Kn,(¢), i=14. Figures of change N,(¢),
N;(t) are presented in Figures 1 and 2.
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Fig. 1. Change of average number of messages in QS §,

N, (#)

15

2 4 b 8 10 12 14 t

Fig. 2. Change of average number of messages in QS S

Solving system (13) we will receive expressions for the average relative num-
ber of serviceable channels in network systems:

w; (1) =0.0061+0.0049¢" " \y, (1) =0.0055 + 0.0035¢ ™" *2%

wy (1) =0.0054 +0.0046¢ 7w, (1) = 0.0066 + 0.0084¢ ™" .

from d,(r)=Kw,(¢), i=1,4. Figures of change d,(¢), d,(r) are presented in Fig-

ures 3 and 4.
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0 2 4 5 g 10 12 14 ¢

Fig. 3. Change of average number of serviceable channels in QS §,

ds(t)
104

o 2 4 B g 10 ¢

Fig. 4. Change of average number of serviceable channels in QS S

Conclusions

The considered method of diffusive approximations for finding the average
number of messages and serviceable channels of QN makes it possible to precisely
define of the given average characteristics in the stationary and transient regime.
The accuracy of method increases with an increase in a number of messages in the
network.
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