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Abstract. Curvilinear finite difference method is a one of variants of generalized finite differ- 

ence method. Geometrical mesh can be created by the optional set of points for which the 

n-points stars are defined. In this paper the 9-points stars are considered (2D task) and the 

method of differential operators approximation is presented. In the final part of the paper 

the example of computations is shown. 

1. CFD for irregular 9-points stars 

Let us consider 2D domain Ω  (a real system {x, y}) covered by irregular mesh 

creating 9-points stars - as in Figure 1a. We assume that the successive stars can be 

univocally transformed on the regular rectangular (square) stars in the so-called 

”mother system { ,ξ η }” (see [1-3]) - as in Figure 1b. 

The function for which the local approximation of first and second order de- 

rivatives is searched we denote by U. The nodes creating the 9-points star (a local 

numeration) are denoted by 0 (central node) and 1, 2,...,8 (adjacent nodes). 

 

 
 real system mother system 

Fig. 1. Real and mother stars 

The function ( ),ξ ηU  is approximated by the algebraic polynomial in the form 

 ( ),ξ η = ⋅U P a  (1) 
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where 

 2 2 2 2 2 21 ξ η ξ ξη η ξ η ξη ξ η =  P  (2) 

is the interpolation base, whereas 

 
T

0 1 2 8a a a a =  a �  (3) 

is a vector of coefficients. Next the following system of equations is considered 

 ⋅ =A a u  (4) 

where 

 
T

0 1 2 8u u u u =  u �  (5) 

is a vector of function U values at the points corresponding to the star nodes, at the 

same time  
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 (6) 

is a main matrix of system (4) resulting from the natural interpolation conditions. 

This system of equations allows to determine the coefficients ia  and to find the 

approximation of ( ),ξ ηU  in a form of polynomial. So, if det  A ≠ 0, then 

 ( ) ( )1, , ,Fξ η ξ η−= ⋅ ⋅ = ⋅ =U P A u N u u  (7) 

while N is a matrix of shape functions in a local co-ordinate system. 

It should be pointed out that in a case of rectangular mesh (e.g. square mesh with 

step h =1), the form of matrix A is a very simple one. 

The same result can be obtained using the Lagrange interpolation [4], namely 

 ( ) ( )( ) ( )2 2 1 1

1 2, 1 1 , ,Fξ η ξ ξ η η ξ η− −   = ⊗ ⊗ ⋅ =   U A A u u  (8) 

where 
1 1

1 2,− −A A  are the regular Lagrange matrices [4]. The symbol used in the last 

formula corresponds to the tensor product. 
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Representation of the mother star in a system { ,ξ η } on the real star in a system 

{x, y} can be realized by the same transformation F, as in a case of function U (the 

similar approach is applied for the finite element method). So 

 ( ) ( ), , ,x yξ η ξ η= ⋅ = ⋅N x N y  (9) 

where 
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 (10) 

Differentiation of formulas (7) or (8) allows to determine the values of deriva-

tives at the central point of mother star. Let us denote by ∂ U  the vector of partial 

derivatives of U with respect to ξ  and η , this means 

 

T
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We obtain 

 1−∂ = ⋅ ⋅U H A u  (12) 

where H is the matrix resulting from differentiation of the base (2) with respect to 

ξ , η , 2ξ , 2η , ξη   
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Now, the transformation of partial derivatives of U in the mother co-ordinates on 

the partial derivatives in the real co-ordinate system will be presented. In this place 

the several approaches can be applied. Here the rules of differentiation will be 

used and then 

 ( ) ( ), , ,U U x y x yξ η=     (14) 

next 
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(15)
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 (16) 

Denoting by G the main matrix of above system we have 

 1d −= ⋅∂ = ⋅ ⋅ ⋅U G U G H A u  (17) 
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In the last formula symbol dU corresponds to the vector of derivatives in the real 

system. 

Now, the elements of matrix G should be calculated. The knowledge of inverse 

transformation 

 ( ) ( ), , ,U U x yξ η ξ η=     (18) 

allows, using the basic rules of differentiation, to find the derivatives being the ele- 

ments of matrix G. 

2. Example of computations 

The considerations presented in the chapter 1 can be a base for solution of the 

following task. In the real system the 9-points star is distinguished. The star nodes 

correspond to points 0 (1, 2), 1 (3, 3), 2 (−1, 1), 3 (4, 1), 4 (−2, 3), 5 (2, 0), 6 (6, 2),  

7 (−4, 2), 8 (0, 4) - Figure 2a. 

 

 
Fig. 2. Primary and transformed stars 

It is easy to check that the formulas 
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transform the real star to unitary square one. The inverse transformation is of the 

form 

 
1 2 3

2

x

y

ξ η

ξ η

= + +


= + −
 (20) 



S. Lara-Dziembek, J. Siedlecki 102

At first, the matrix A must be constructed. For the unitary square star it is the ma-

trix 
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The successive rows of matrix A correspond to values of basic functions at the nodes 

of unitary square star. We find the inverse matrix, namely 

 1
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We also determine the matrix G. For the data assumed it is the following matrix 

 

0.2 0.2 0 0 0

0.6 0.4 0 0 0

0 0 0.04 0.04 0.08

0 0 0.36 0.16 0.48

0 0 0.12 0.08 0.04
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Application of formula (17) allows to calculate the values of derivatives at the nodes 

0, 1,..., 8 of real star. To check the exactness of finite difference approximation it 

was assumed that the values of U at the nodes of real star are equal to 
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 [ ]
T

10 12 12 20 0 22 22 2 2=u  (24) 

Equation (17) for central node 0 gives the following values of derivatives [5] 

 [ ]
T

d 2 4 0.16 1.44 0.48= −U  (25) 

The second part of numerical experiment consisted in the direct polynomial inter- 

polation of function U at the points oriented in the real system. The differentiation 

of this polynomial with respect to x and y gave for central node exactly the same 

values of partial derivatives. 

Application of CFD for numerical solution of boundary problems requires the 

transformation of successive real stars to the mother system in which one can find 

the approximation of derivatives and the approximation of e.g. Laplace operator, 

next the obtained formulas are transformed to the real system. At present the authors 

are going to prepare the computer program basing on CFD for numerical solution 

of eliptic and parabolic equations. The others versions of generalized finite differ-

ence method are presented, among others, in [6, 7]. 
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