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Abstract. The paper concerns the problem of the application of the Discrete Wavelet 
Transform and the Lipschitz exponent to an estimation of function differentiability.  
The influence of number of discrete data (measurements points) and a class of function on 
the discontinuity indicator is analyzed. The problem is discussed on the example of func-
tions which represent a structural response of a mechanical static system. 

Introduction 

The wavelet transform is widely used in many problems like compression and 
recognizing of images, signal denoising, solving boundary value problem and  
damage detection. 

Application of the wavelet transform to the problem of damage detection is pre-
sented in many papers [1-3]. The wavelet transform allows for a multi-resolution 
analysis of an arbitrary function. Therefore, each level of the transform expresses 
respective detailed information about the function. The most detailed information 
usually indicates a position of a signal disturbance. The wavelet transform was 
originally used in time-frequency domain, but it was quickly found further applica-
tions [4-6]. 

The Lipschitz exponent is a well known tool, which is used to estimate of func-
tion differentiability. To find function discontinuity, the exponent is applied  
together with wavelet transform. For better understanding of our paper, basis  
of wavelet transform and the Lipschitz exponent are shortly presented below. 

The possibility and suitability of function discontinuity estimation using  
Discrete Wavelet Transform (DWT) is discussed in the paper. A problem of num-
ber and density of the data arises because the DWT uses a discrete data represent-
ing a function. The problem is analyzed for various classes of function and the 
results are compared to analytical solutions.  
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1. Discrete wavelet transform and Lipschitz exponent 

Wavelet transform was described in many papers [7-9]. The wavelet transform 
of a function f(x) is defined as a set of coefficients (wavelet coefficients) dj,k: 
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where the term )(, xkjψ  denotes the complex conjugate to the wavelet family kj,ψ . 

The family is generated from the mother wavelet ψ  according to the expression 
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The integers j and k are called dilation (scale) and translation (position) parame-
ters, respectively. The scale parameter corresponds to a respective part (level) of 
function decomposition (j = 0,1,…, J−1), where J is a maximum level of the trans-
form. The parameter k = 0,…,2j−1 indicates the position of wavelet. A discrete  
signal fJ (number of discrete data is equal to 2J) can be decomposed into the wave-
let series 
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A function f(x) is Lipschitz α ≥ 0 at the point x = ν if there exists a constant  
A > 0 and a polynomial pν (x) of order m such that 

 ( ) ( ) ( ) ( ) α
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The term εν(x) contains all discontinuities of the function f(x) at the point x = ν. 
The Lipschitz exponent (LE) α  is a measure of function differentiability at the 

point x = ν. If the function is not differentiable, then 0 < α  < 1. If the Lipschitz 
exponent is used to the wavelet transform, then vanishing moments of the mother 
wavelet play an important role. A wavelet ψ (x) has n vanishing moments if it  
satisfies 
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If the wavelet function has a sufficient number of vanishing moments such that  
n ≥ α, the wavelet transform indicates a singular part of a function because of: 

 ( ) ( ) ( ) 0, == xWpxWxWf ννε  (6) 



Application of the Lipschitz exponent and the wavelet transform ... 25

The Lipschitz exponent is calculated using the following inequality: 

 ( ) ( )2/12 +−⋅≤ αjAxfW  (7) 

Hence, 
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Application of the Lipschitz exponent was presented in [10, 11]. 

2. Formulation of the problem 

Consider a static or dynamic mechanical system subjected to arbitrary actions. 
Assume that the system contains local information which is hidden in the global 
response. The response can be treated as a signal in which local disturbances  
may occur. The main aim is finding these disturbances and estimating the level  
of discontinuity of the signal. The problem is well placed in the subject area  
of structural damage identification, since defects generate discontinuities in  
the response of a system. To solve the problem, wavelet transform connected with 
the Lipschitz exponent can be used. Unfortunately, in real systems, it is usually not 
possible to find an exact analytical form of the system response because of consi-
derable limitations to number of measurement points. 

Our aim is verification of application possibility of DWT and LE to estimation 
of function discontinuity in case of the analysis of discrete signal representation. 
From our point of view a minimum number of measurement points and a type  
of a wavelet in context of a class of function continuity seems very important. For 
the simplicity of  the presentation, the problem is discussed on the example  
of a simple mechanical system and its response. 

3. Examples 

In the example, we analyse the structural response of the simply supported 
beam with span L, loaded by distributed force q and concentrated force P located 
in the middle of the system (Fig. 1).  

Bending stiffness of the beam is equal to EI. The functions of shear force Q(x), 
moment M(x), slope w’(x) and displacement w(x) of the Bernoulli’s beam have 
simply analytical form: 
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where Φ(x) is Heaviside’s function. The functions M(x), w’(x) and w(x) are the 
class C0, C1 and C2, respectively (Fig. 2). In our example we assume the following 
parameters: L = 5.12 m, q = 10 kN/m, P = 10 kN and EI = 5000 kNm2.  
 

 

Fig. 1. The model of the simply supported beam structure 

The discontinuity of the shear force function is clearly visible. Application  
of DWT (Daublet 8 mother wavelet, 1024 points) to M(x) reveal local disturbances 
of the function in the middle of the structure. The phenomena can be observed in 
the transform details D1, D2 and others (Fig. 3). 

Applied the Lipschitz exponent, we can find the parameter α, which in this case 
is equal to 1.0226 (Fig. 4). It means that the function M(x) is continuous and its 
derivative is not continuous. Please note, that used in the example wavelet daublet 
8 has four vanishing moments and therefore it is able to verify continuity of three 
derivatives of the function. 

Now we can focus on the problem of number of measurement points. Above 
described approach was used in analysis of displacement and slope functions for  
N = 1024, 256 and 64 points. The wavelets from the same family but with various 
number of vanishing moments were used, namely daublet 2, 4, 6, 8 and daublet 10. 
They have from 1 to 5 vanishing moments, respectively. The values of received 
Lipschitz exponents α are presented in the Table 1. 

The results proof that Lipschitz exponent together with DWT can be success-
fully applied in the estimation of function differentiability. Type of wavelet should 
be suitable to detect local discontinuities. For example, in case of the function 
w(x), the admissible wavelet is daublet 6, but just daublet 8 shows that there are 
only two and no more continuous derivatives. Received values for inadmissible 
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wavelets were shaded in the table. Interesting is also that if we use very poor 
wavelet like daublet 2, it is impossible to answer for the question about continuity 
level of w(x). Please also note, that the size of discontinuity (in our situation value 
of the force P) has almost no importance on the value of α.  
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Fig. 2. The structural response of the beam: a) shear force, b) bending moment, c) slope,  
d) displacement function 

 
a) detail D1 b) detail D3 
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Fig. 3. Details D1 and D3 of DWT (Daublet 8, N = 1024) of M(x) 

a) b) 
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Fig. 4. The diagram of log2|Wf(x = ν)| as a function of wavelet transform level j 

Table 1 
The Lipschitz exponent αααα of the functions w(x) and w’(x) 

Wavelet function  
Function 

Number  
of points N Daublet 2 Daublet 4 Daublet 6 Daublet 8 Daublet 10 

1024 - 1.998 3.1201 3.0755 3.0001 
w(x) 

256 - 1.9697 3.2446 3.1303 3.0968 
       

1024 0.9980 1.9037 1.9934 2.0681 1.9635 
w’(x) 

256 0.9615 2.2859 2.0849 2.0681 1.9635 

 
The value of the Lipschitz exponent depends on approximation used in calcula-

tion of the exponent. The relation between number of discrete data and the expo-
nent is rather clear. If there are more points, function continuity is lower because 
when points are very closed to each other, discontinuity is “visible” as more sharp. 
Trials of signal analysis basing on 64 points ended in failure. The minimum num-
ber of points is equal to 128, however in practise, a measurement noise may highly 
influence on results. 

Concluding remarks 

The presented analyses demonstrate that the Lipschitz exponent and the Dis-
crete Wavelet Transform can be successfully used in the estimation of function 
differentiability. The type of applied wavelet functions (in fact number of vanish-
ing moments) should depend on the type of signal discontinuities. The number  
of discrete data influences on the results, but the differences are relatively small.  
It is important that the proper analysis requires certain number of measurement 
points. The effectiveness and simplicity of the method make it a powerful tool in 
signal discontinuity analysis. 
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