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Abstract. In the paper the numerical analysis of thermal process proceeding in the domain 

of one-dimensional skin tissue subjected to an external heat source is presented. The degree 

of the skin burn can be predicted on the basis of Henriques integrals. Main subject of paper 

is the sensitivity analysis of these integrals with respect to the thicknesses of epidermis and 

dermis. On the stage of numerical realization the boundary element method has been used. 

1. Governing equation 

The skin is treated as a multilayer domain, in which one can distinguish the 

following sub-domains: epidermis Ω1 of thickness L1 − L0 [m], dermis Ω2 of thick-

ness L2 − L1 and sub-cutaneous region Ω3 of thickness L3 − L2 - Figure 1. 

 

 

Fig. 1. Skin tissue domain 

The transient bioheat transfer in the domain of skin is described by the follow-

ing system of Pennes equations [1]: 
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where e identifies the epidermis, dermis and sub-cutaneous region, λe [W/mK] 

is the thermal conductivity and ce [J/m
3
K] is specific heat per unit of volume, 

ke = GecB is the product of blood perfusion rate and volumetric specific heat of 

blood, TB is the blood temperature and Qme is the metabolic heat source. It should 

be pointed out that for the epidermis sub-domain (e = 1) G1 = 0 and Qm1 = 0. 

On the contact surfaces between sub-domains considered the continuity conditions 

are given, namely 
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Additionally 
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where q = λ1∂T1/∂x, q0 is the given boundary heat flux, t0 is the exposure time, α is 

the heat transfer coefficient, T
 ∞
 is the ambient temperature. For conventionally 

assumed boundary limiting the system the no-flux condition 
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can be accepted. For t = 0 the initial temperature distribution is known, namely 

 
1 1 2 2 3 3

0 : ( ), ( ), ( )
p p p

t T T x T T x T T x= = = =  (5) 

A quadratic initial temperature distribution between 32.5°C at the surface and 

37°C at the base of the sub-cutaneous region was introduced [1]. 

Thermal damage of skin begins when the temperature at the basal layer 

(the interface between epidermis and dermis) rises above 44°C (317 K). Henriques 

[2] found that the degree of skin damage could be predicted on the basis of the 

integrals 
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where ∆E/R [K] is the ratio of activation energy to universal gas constant, Pb, Pd 

[1/s] are the pre-exponential factors, while Tb, Td [K] are temperatures of basal 
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layer (the surface between epidermis and dermis) and dermal base (the surface 

between dermis and sub-cutaneous region). 

First degree burn are said to occur when the value of the burn integral (6) is from 

the interval 0.53 < Ib ≤ 1, while the second degree burn when Ib > 1 [1, 2]. Third 

degree burn are said to occur when Id > 1. So, in order to determine the values of 

integrals Ib, Id the heating and next the cooling curves for the basal layer and der-

mal base must be known. 

2. Shape sensitivity analysis 

In the paper [3] the sensitivity analysis of temperature field in domain of skin 

tissue with respect to thermophysical parameters of skin has been presented. Here, 

the shape sensitivity analysis of temperature distribution and burn integrals is dis-

cussed. Similar problem has been presented in [4], but only the sensitivities of 

burn integrals with respect to shape design parameter L0 have been calculated. 

Here, the modification of parameter L1 is also discussed. 

Using the concept of material derivative we can write [5, 6] 
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where vs = vs(x, bs) is the velocity associated with design parameter b1 = L0 

or b2 = L1. 

For the material derivative following formulas can be derived (c.f. equation (8)) [4]: 
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If the direct approach of sensitivity method is applied [4-6] then the equations (1) 

are differentiated with respect to parameters bs, s = 1, 2. 

Introducing the functions Ues = DTe/Dbs and using the formulas (9), (10), (11) 

one has 
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or (c.f. equation (1)) 
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In similar way the boundary - initial conditions are differentiated with respect to 

shape parameters bs. So, for surface of the skin one has 
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this mean 
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or 
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For boundary limiting the system: 

 3

3 3 3
: 0

s
U

x W
x

∂ 
∈Γ = −λ = 

∂ 
 (17) 

Differentiating the continuity conditions (2) one obtains (c.f. formula (9)) 
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where: qe = −λe∂Te/∂x, Wes = −λe∂Ues/∂x for x = Le, e = 1, 2 and qe = λe∂Te/∂x, 

Wes = λe∂Ues/∂x for x = Le-1, e = 2, 3. 

Consistent with the formula (8) the initial condition takes a form 
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In the case of sensitivity analysis with respect to shape parameter b1 = L0 we 

assume the following form of velocity 
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while for the problem concerning the sensitivity analysis with respect to shape 

parameter b2 = L1 
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Taking into account the forms (6), (7) of functionals Ib, Id, the sensitivity of these 

integrals with respect to the parameters bs is calculated using the formulas 
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where r = p or r = s and Tb = T1(L1, t) = T2(L1, t), Td = T2(L2, t) = T3(L2, t), Ubs = 

= U1s(L1, t) = U2s(L1, t), Uds = U2s(L2, t) = U3s(L2, t) (c.f. equations (2)). 

The change of burn integrals connected with the change of parameters bs results 

from the Taylor formula limited to the first-order sensitivity, this means 
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3. Boundary element method 

The primary and also the additional problems resulting from the sensitivity 

analysis have been solved using the 1
st
 scheme of the BEM for 1D transient heat 

diffusion [7]. The boundary integral equations (for successive layers of skin - 

e = 1, 2, 3) corresponding to the primary problem and the transition t
 f−1
 → t

 f
 are 

of the form [3, 4, 7] 
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where Te
*
 are the fundamental solutions given by formulas 
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where ξ is the point in which the concentrated heat source is applied and ae = λe/ce. 

The heat fluxes resulting from the fundamental solutions are equal to 
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For ξ → Le−1
+
 and ξ → Le

−

 for each domain considered one obtains the system of 

equations 
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and then the final form of resolving system results from the continuity conditions 

(2) ad conditions given for x = L0, and x = L3 (equations (3), (4)): 
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In similar way one can solve the additional sensitivity problems. 
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4. Examples of computations 

In numerical computations the following values of parameters have been assu-

med [1]: λ1 = 0.235 W/mK, λ2 = 0.445 W/mK, λ3 = 0.185 W/mK, c1 = 4.3068× 

×10
6
 J/m

3
K, c2 = 3.96⋅10

6
 J/m

3
K, c3 = 2.674⋅10

6
 J/m

3
K, cB = 3.9962⋅10

6
 J/m

3
K, 

TB = 37°C, G1 = 0, Ge = 0.00125 (m
3
blood/ s)/m

3
tissue for e = 2, 3, Qm1 = 0, 

Qme = 245 W/m
3
 for e = 2, 3 [1]. Pre-exponential factors: Pb = 1.43⋅10

72
 1/s for 

Tb ≥ 317 K and Pb = 0 for Tb < 317 K, while Pd = 2.86⋅10
69
 1/s for Td ≥ 317 K and 

Pd = 0 for Td < 317 K. The ratio of activation energy to universal gas constant: 

∆E/R = 55000 K. The thicknesses of sub-domains: epidermis L1 − L0 = 0.0001 m, 

dermis L2 − L1 = 0.002 m and sub-cutaneous region L3 − L2 = 0.01 m. Heat transfer 

coefficient α = 8 W/m
2
K, and the ambient temperature T 

∞
 = 20°C. Time step: 

∆t = 0.05 s. The sensitivity of burns integrals has been calculated under the 

assumption that ∆L0 = 10
 −5
 m and ∆L1 = 10

 −5
 m (c.f. equation (23)). 

In the first example of computations the heat flux q0 = 6500 W/m
2
 on the skin sur-

face has been assumed, the exposure time: t0 = 18 s. The successive skin layers 

have been divided into 10, 40 and 120 internal cells. 

In Figure 2 the temperature distribution in the skin domain is shown. In Figures 3 

and 4 the course of burn integral Ib and its courses found on the basis of sensitivity 

analysis with respect to parameters L0 and L1 are shown (c.f. equations (6), (23)). 

The times to the first and second degree burns predicted for the basic value of epi-

dermis thickness are equal 16.25 s and 17.8 s, respectively. It is visible, that the 

thickness of epidermis has essential influence on the times of burns appearance. 

 

 
Fig. 2. Temperature distribution (q0 = 6500 W/m2, t0 = 18 s) 
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Fig. 3. Course of burn integral Ib - change of L0 

 
Fig. 4. Course of burn integral Ib - change of L1

 

In the second example of computations the heat flux q0 = 80000 W/m
2
 on the skin 

surface has been assumed, the exposure time: t0 = 5 s. The successive skin layers 

have been divided into 5, 20 and 60 internal cells. 

In Figure 5 the distribution of temperature in the skin domain is shown. In Figures 

6 and 7 the course of burn integral Id and its courses found on the basis of sensi- 

tivity analysis with respect to the parameters L0 and L1 are shown (c.f. equations 

(7), (23)). The time to the third degree burn predicted for the basic values of epi-

dermis and dermis thickness is equal 14.75 s. As previously, it is visible, that the 

thickness of epidermis has essential influence on the time of burn appearance. 
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Fig. 5. Temperature distribution (q0 = 80000 W/m2, t0 = 5 s) 

 
Fig. 6. Course of burn integral Id - change of L0 

 
Fig. 7. Course of burn integral Ib - change of L1 
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