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Abstract. A composite plate (matrix and reinforcing elements) under conditions of plane 

deformation is considered. According to the elastic properties, the material of the plate is 

considered orthotropic with uniformly distributed defects-cracks that do not interact with 

each other. The geometric characteristics of defects are statistically independent random 

variables – the half-length and the orientation angle between the defect line and the axis of 

orthotropy with a larger Young’s modulus. The ratio for the failure loading integral proba-

bility distribution function of the composite was obtained. The dependencies of the re-

searched composite probability of failure (reliability) for the different number of cracks 

(plate sizes), different types of loading and various values of the exponential distribution 

parameter are calculated and investigated graphically. 
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1. Introduction 

The problem of the composite materials strength, which occupy an important 

place in the design of structural elements, is an urgent task. Taking into account the 

randomness and stochasticity (certain probability distribution) of their structural 

descriptive parameters are determining aspects for assessing their strength and  

reliability. The complex application of deterministic solutions to the problems of 

brittle fracture mechanics and statistical-probabilistic methods allows this assess-

ment to be carried out qualitatively. The study of this direction was carried out in 

the works of a number of authors. The article [1] presents a methodology for relia-

bility assessment of composite members based on appropriate limit state functions 

derived according to fundamental failure criteria, applicable to composite materials. 

The methodology that is proposed employs a stochastic response surface method 

which combines in discrete steps modelling, numerical simulations and analytical 
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probabilistic assessment techniques. In paper [2], using Weibull distribution, the 

welded joint reliability can be obtained. The probability distribution according to 

which the joint will fail is estimated. In study [3], experiments are carried out to 

determine the tensile strength of laminates, for three different orientations of 

glass/epoxy and carbon/epoxy composites. Using two-parameter Weibull distribu-

tion, the theoretical tensile strength values are determined for glass fiber reinforced 

polymer and carbon fiber reinforced polymer composites for different strain rates. 

The effect of wet-dry cycling times on the failure modes, tensile strength, and the 

probability distribution of different fiber reinforced polymer composite specimens 

were investigated [4]. According to the experimental results, a probability analysis 

was conducted on the degradation of tensile strength. The work [5] presents an  

extension of a previously developed numerical framework utilizing discontinuous 

solid-shell elements and enriched cohesive elements for the simulation of damage 

growth of open-hole laminates under compression. The role of microstructural 

bridging on the fracture toughness of composite materials was investigated in [6]. 

To achieve this, a new computational framework is presented that integrates phase 

field fracture and cohesive zone models to simulate fibre breakage, matrix cracking 

and fibre-matrix debonding. The calculation of the failure probability in the carbon 

fibre/epoxy-based composite material was carried out [7]. The effective orthotropic 

properties of the composite for various fibre-volume fractions have been numeri-

cally computed by the homogenisation method using periodic boundary conditions. 

In paper [8], an adaptive multi-fidelity modelling approach is proposed, wherein 

actively damaging areas are modelled with high-fidelity three-dimensional brick 

elements and discrete cracks, while dormant and inactive sites are modelled with 

lower-fidelity shell elements and smeared cracks. The transition criteria between 

the two levels of modelling are studied in order to preserve as much fidelity to  

the physics as necessary while improving computational efficiency. 

The purpose of this study is to develop a statistical model of failure (reliability 

assessment) of orthotropic composite materials under conditions of plane defor-

mation, taking into account the structural heterogeneity of the material. 

2. Formulation of the problem 

We consider a plate made of a composite material consisting of a matrix and  

reinforcing elements. According to its elastic properties, such a material can be 

considered as orthotropic. The plate is under the conditions of action of a loading 

P  and ( )Q Q P  uniformly distributed along the edges (conditions of plane  

deformation) (Fig. 1). The coordinate axes 1ox  and 1oy  correspond to the main  

axes of orthotropy, 1E  and 2E  are the Young’s modulus for tension-compression 

along the axis 1ox  and the axis 1oy , respectively 1 2( )E E . 

It is known that the structural heterogeneity of the material is an important  

parameter that determines the failure nature around the crack, in addition to the 
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strength properties. Therefore, when formulating the composite materials failure 

criterion under the conditions of a complex stress state, taking this heterogeneity 

into account is an important task. Among various defects, cracks play a special 

role, because they cause a significant concentration of stresses in a deformed body. 

The development of such defects leads to local or complete failure of the compo-

site. In the material under study, there are evenly distributed defects-cracks that  

do not interact with each other. The geometric characteristics of defects are their 

half-length l  and the orientation angle   between the defect line and the orthotropy 

axis 1ox  (Fig. 1). They are statistically independent random variables. The defect of 

the structure is characterized by the joint probability distribution density ( , )f l  

and the integral probability distribution function ( , )F l , which are set on the basis 

of structural analysis or a priori general considerations. 

 

 

Fig. 1. Model of orthotropic composite material with random defects 

3. Probability distribution densities of defects  

geometric characteristics 

We accept the hypothesis about the most probable orientation of cracks in the 

direction of the axis 1ox  (reinforcement direction, higher Young’s modulus 1E ), 

which is confirmed by experimental studies [9]. We enter the Young’s moduli ratio 

1 2/ 1E E   . According to the accepted hypothesis, we choose the probability 

distribution density of a random variable   in the form [10] 

 
3/2

3 2 2
( )

( sin cos )
f




   



. (1) 

When 1   we get a uniform distribution that corresponds to the isotropic  

material structure defectiveness. 
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Probability distribution density graphs ( )f   (1) for different Young’s moduli 

ratio (various values of the parameter  ) (Fig. 2) were presented in [10]. In partic-

ular, the value 3.2   corresponds to the specimen from the epoxy phenolic fiber-

glass EF 32-301 on the cord glass fiber TSC-VM-1-78 [10], for which the crack 

propagation along the main direction of reinforcement has been experimentally 

confirmed. 
 

 

Fig. 2. Probability distribution density ( )f   for different values of the parameter   

We will assume that the random variable l  varies in a certain interval 0 l d  , 

where d  is the finite structural characteristic of the material. In paper [11], a failure 

criterion that takes into account the micro heterogeneity of the material is proposed. 

The initial direction of crack propagation in the general case of plane tension- 

-compression of a micro heterogeneous brittle body is established based on the 

well-known concept of macro stresses (stresses averaged over some area). 

 

 
Fig. 3. A structural element centered at the top of the defect 

We introduce a structural element with the center at the top of the defect and 

dimensions 12  and 22  [12] (Fig. 3). The parameters 1  and 2  depend on the 
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size, type and density of the material structure heterogeneity distribution. The size 

of the structural element 1  is small in comparison with the magnitude l . The value 

is 2  equal to the distance between the centers of adjacent reinforcing fibers 

2 1( ) ≪ . 

Let’s introduce a random variable 1 /L l  that changes over an interval: 

0 L   , where   is a fixed parameter. This assumption makes it possible to 

simplify the material model and mathematical calculations. 

In [10], the probability distribution density of a random variable L  was chosen 

in the form of a power distribution 

 
1( 1)

( ) , 1, 0
( )

s

s

s a
f L s a

L a


  


. (2) 

Distribution (2) is a two-parameter statistical model, where s  is a form parame-

ter, a  is a scale parameter. 

In this study, we choose the probability distribution density of the random vari-

able L , in accordance with the results of the strength statistical theory development 

[13, 14], in the form of an exponential law 

 /( ) /L hf L e h . (3) 

Here h  is a distribution parameter having the dimension of a random variable 

L. According to the physical meaning of law (3), the probability of value L  occur-

rence decreases with its increasing. 

The parameter L  integral probability distribution function will be written as  

follows: 
/( ) 1 L hF L e  . 

Graphs of the parameter L  probability distribution density in the case of power 

[10] and exponential distributions are shown in Figure 4. 
 

 

Fig. 4. Probability distribution density ( )f L  (solid for the exponential law,  

dashed for the power law at 3a  ) 
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As the random variable L  increases, the probability distribution density curves 

( )f L  asymptotically approach zero. There is a certain range of the parameter L  in 

which a significant change in the value of the probability distribution density  

occurs. For certain parameter values a , s  and h , the curves of power and expo-

nential laws differ little from each other. 

Joint probability distribution density of statistically independent random varia-

bles   and L  according to (1), (3) has the form 

 
3/2 /

3 2 2
( , )

( sin cos )

L he
f L

h




   






. (4) 

Graphs of the joint probability distribution density ( , )f L  (4) are shown in 

Figure 5. 
 

 

Fig. 5. Joint probability distribution density ( , )f L  for different parameter values h  

The graphs ( , )f L  are symmetrical about the y-axis. As the parameter h  

changes, the shape of the curve ( , )f L  changes. An increase in the value of the 

parameter h  leads to a decrease in the maximum of the joint probability distribu-

tion density. 

4. Failure loading integral probability distribution function 

According to the methodology [15] and expression (4), the failure loading  

integral probability distribution function for a composite element with one defect  

is written as follows: 

 
1

,

( , , , , )/3/2

1 max3 2 2
( , ) , 0

sin cos
L

L l P h
e

F P d dL P P
h



  
 

   





  
 . (5) 
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Here ,L  is the integration area: /2 /2     , 0 L  , the value  

1( , , , , )L l P    is determined from the failure criterion [10], which is expressed 

through the components of macroscopic stresses [ ] ( 1,2; 1,2)ij i j    

 2 2
11 22 12[ ]sin [ ]cos [ ]sin 2 cr         , (6) 

where cr  is the strength of the composite. 

For an arbitrarily oriented crack, the macroscopic stresses [ ]ij  are written as 

 
3 2
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where the following notations are introduced: 
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Here k  are complex parameters, which are determined from the characteristic 

equation [16] 

 
4
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where 12  is Poisson’s coefficient, 12G  is the shear modulus. 

Taking into account the elastic material characteristics 1 50100 MPaE  , 

2 15 600 MPaE  , 12 0.25   [9], were obtained [10] the following solutions of 

equation (9): 1 2.7874i  , 2 0.6429i  . 

We reduce the double integral (5) to the corresponding repeated integral, and 

taking into account that the value of the integral probability distribution function of 

the parameter L  belongs to the segment [0;1], we obtain 
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5. The probability of failure of orthotropic composite material 

A plate containing N  defects probability of failure (reliability) we find by the 

formula [15], which is based on the hypothesis on the weakest link 

  1 max1 1 ( , ) , 0
N

fP F P P P     . (11) 

Taking into account expressions (10), (11), the orthotropic composite material 

plate with N  cracks probability of failure for biaxial tension-compression 
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 
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According to the formula (12), taking into account failure criterion (6)-(8), the 

dependencies of the researched composite probability of failure fP  for the differ- 

ent number of cracks N , different types of loading (parameter  ) and various  

values of the distribution parameter h  are calculated. The corresponding diagrams 

are shown in Figures 6 and 7. 

In Figure 6, the diagrams are shown for different types of composite stressed 

state at 1h   for uniaxial tension ( 0)  , for equal biaxial tension ( 1)   and for 

tension-compression ( 1)   . Diagrams are constructed for different number of 

cracks. 
 

 

Fig. 6. Probability of failure for various types of stress state (solid for 0  ,  

dashed for 1  , dotted dashed for 1   ) 

Figure 7 shows the dependence of the probability of failure in the fixed dimen-

sions of the composite ( 60)N   on the different material structural heterogeneity 

and for the different types of loading. 
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Fig. 7. Probability of failure of the composite for different values of the parameter h   

(solid for 0  , dashed for 1  , dotted dashed for 1   ) 

6. Conclusions 

In Figure 6, we observe the dependence of the probability of failure fP  on the 

type of stress state (influence of the parameter  ). For a fixed loading, we get the 

highest value fP  for tension-compression ( 1)   , as well as its increase with  

an increase in the number of defects .N  A certain range of loading corresponds to  

a low probability of failure. 

Figure 7 shows the dependence of the probability of failure in the fixed dimen-

sions of the composite ( 60)N   for different material structural inhomogeneity 

(parameter h ) at different types of loading. We obtain the pattern of the probability 

of failure decreasing for a fixed loading when the material structure goes to the 

homogeneous with an increase in the parameter h . This pattern depends on the 

type of stressed state (on  ). 

According to the physical meaning of law (1), for the proposed material model, 

the predominant orientation of defects is in the direction of reinforcement. There-

fore, it can be concluded that the lowest probability of failure of the studied materi-

al under equal biaxial tension, i.e., the highest reliability, is a consequence of the 

action of the loading Q , which closes the cracks and increases of the material 

strength. Therefore, we observe the influence of the material structure orthotropy. 
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