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Abstract. A closed exponential queueing G-network of unreliable multi-server nodes was 

studied under the asymptotic assumption of a large number of customers. The process of 

changing the number of functional servers in network nodes was considered as the birth- 

-death process. The process of changing the number of customers at the nodes was consid-

ered as a continuous-state Markov process. It was proved that its probability density func-

tion satisfies the Fokker-Planck-Kolmogorov equation. The system of differential equations 

for the first-order and second-order moments of this process was derived. This allows us to 

predict the expectation, the variance and the pairwise correlation of the number of custom-

ers in the G-network nodes both in the transient and steady state.  
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1. Introduction  

G-networks are generalized queueing networks that are primarily different from 

Jackson and BCMP networks in that they are networks of queues with several 

types of customers: positive customers, negative customers and in some cases trig-

gers. Negative customers and triggers are not served. When a negative customer  

arrives at a queueing system (queue, node), one or a group of positive customers  

is removed (or "killed") in a non-empty queue, while the queued trigger displaces 

customers and moves positive customers from one node to some other node.  

G-networks were first introduced by E. Gelenbe and have been studied in a steady 

state since the 90s [1-3]. G-networks are of great interest for extending the multi-

plicative theory of queueing networks. Their field of application is modelling com-

puting systems and networks, evaluating their performance, modelling biophysical 

neural networks, pattern recognition tasks and others [4-6]. At the present time, 

many scientific works are dedicated to the study of G-networks. G-networks in the 

transient state were studied by M. Matalytski [7, 8]. 
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It is important to make mention of random neural networks (RNNs). RNNs are 

a class of neural networks (NNs) that can also be seen as a specific type of queue-

ing networks. RNNs are closely linked to the G-networks. The RNN model was  

introduced by E. Gelenbe in 1989 [9]. The design of the model was inspired from 

the biological behavior of neuron circuits in the neo-cortex. Their areas of applica-

tion are machine learning problems, optimization, image processing, associative 

memories, etc. [10-12]. 

The purpose of this paper is to asymptotically study a Markov G-network of  

unreliable queueing nodes. The unreliability of nodes lies in the fact that their  

servers can be broken down and be repaired according to a certain statistical law. 

The study of queueing networks with multi-server nodes in case of server break-

downs and repairs is important for practical applications. It is a priori obvious that 

the queue lengths at the nodes depend on systematic server failures. Asymptotic 

analysis implies an approximation method of queueing network study under the  

assumption of a large but limited number of customers (requests) [13-15]. 

Discrete (discontinuous-state) Markov processes are usually used to determine 

the state of queueing networks. In this paper, the passage to the limit from a Mar-

kov chain to a continuous-state Markov process was considered. In contrast to dis-

continuous processes, continuous processes in any small time interval 0t   have 

some small change in the state 0x  . The mathematical approach used in this 

paper is based on a discrete model of a continuous Markov process described in 

many books on the theory of diffusion Markov processes [16]. 

2. Formulation of the problem 

A closed exponential G-network including nodes ,iS  1, ,i n  and zero node 0S  

is under study. Suppose that the network is designed to serve a finite and, moreover, 

a constant number of customers .K  Node 0S  is interpreted as a dependent source of 

customers, generating customers in the G-network only at the moment customers 

arrive to 0 .S  We assume that the arrival of customers from 0S  forms Poisson pro-

cess of rate 0 0 ( ),k t   the rate parameter is proportional to the number of cus-

tomers in the source 0 ( ).k t  The flow of arriving customers is divided into two 

types: positive and negative. Thus, the probability of a positive customer arriving 

from source 0S  to node iS  in time interval [ ,  ]t t t  is 0 0 ( ),ip t t     negative – 

0 0 ( ),ip t t     1, ,i n  
0 0

1

( ) 1.
n

i i

i

p p 



   

Each of the nodes iS  is an unreliable queueing system with an infinite queue 

length, the number of identical servers is ,im  1, .i n  Servers in nodes ,iS  1, ,i n  

are subject to random failure. The continuous functional time of each server in iS  

is exponentially distributed with the rate parameter ,i  1, .i n  The server lifespan 

does not depend on whether the device is busy or not. The server immediately 



Asymptotic analysis of a closed G-network of unreliable nodes 93

starts to be repaired after the failure. The server repair time in iS  also has an expo- 

nential distribution with the rate parameter ,i  1, .i n  Suppose if the server fails 

during the customer service time, the interrupted customer will be completed after 

the repair of the server. Let us assume that the server service time, server uptime, 

and server repair time are independent random variables. Node 0S  is a queueing 

system without a waiting area and it has K  identical reliable servers. 

All servers of the node iS  are identical, and they have exponentially distributed 

service time for positive customers. Let i  is the reciprocal of their mean service 

time, 1, .i n  Positive customers are served in order of arrival. A negative customer 

arriving at some non-empty network node removes one customer in this node and 

immediately transfers to source 
0S  without receiving any service at the node. 

Therefore, only positive customers can be served at each node, and so they are  

usually referred to simply as customers for brevity. If the service time of positive 

customers has an exponential distribution, then there is no difference in terms of 

which customer is removed from the node. 

Customer routing is defined as follows. A positive customer served at node iS  

with probability ijp  transfers to node jS  as a positive customer, or with probability 

ijp  transfers as a negative customer, or with probability  0

1

1
n

i ij ij

j

p p p 



    

leaves the network and joins source 0 ,S  , 1, .i j n  

The state of the network under study at time t  is represented by a vector 

 1 2 1 2( ( );  ( )) ( ( ),  ( ),...,  ( );  ( ),  ( ),...,  ( ))n nz t k t z t z t z t k t k t k t , (1) 

where ( )iz t  is the number of functional servers, ( )ik t  is the number of customers in 

the queueing system iS  at the time ,t  0 ( ) ,i iz t m   0 ( ) ,ik t K   1, ,i n  

 0, .t   Since the network is closed, it is obvious that 0

1

( ) ( ).
n

i

i

k t K k t


    

The state (1) can be viewed as two simultaneous random processes ( )z t  and ( ).k t  

The purpose of the study is to determine states probabilities, expected value and 

variance of the vector ( );z t  derive systems of differential equations for the first-order 

and second-order moments of the ( )k t  in the asymptotic case of a large .K   

3. The process of changing the number of functional servers 

in network nodes  

The process of changing the number of functional servers in network nodes is 

1 2( ) ( ( ),  ( ),...,  ( )).nz t z t z t z t  Server failures and repairs in different queueing nodes 

are assumed to occur completely independently and regardless of the number of  
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requests in these nodes. Therefore, the vector elements ( )iz t  are independent sto-

chastic processes and ( )iz t  are not determined by ( ),jk t  , 1, .i j n   

The process ( )iz t  can be considered as the birth-death process with birth rates 

,i  death rates i  and the finite integer state space {0,1, 2, ..., },i iZ m  1, .i n   

Denote 
( ) ( ) ( ( ) )
i

i
i iz

p t P z t z   is the probability that node iS  has iz  functional servers 

at time ,t  ,iz ℤ  0 ,i iz m   1, .i n  The differential equations for the probabilities 
( ) ( )
i

i

zp t  are well known [16]: 

 

( ) ( ) ( )
0 0 1

( ) ( ) ( ) ( )

1 1

( ) ( ) ( )

1

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),  1 1,

( ) ( ) ( ),  1, .

i i i i

i i i

i i i
i i

i i i i
i i i i i iz z z z

i i i
i im m m

p t p t p t

p t p t p t p t z m

p t p t p t i n

 

   

 

 



    

         


   

 (2) 

The non-stationary probability distribution 
( ) ( ),
i

i

z
p t  0 ,i iz m   1, ,i n  can be 

found by solving system (2) with a certain initial condition. The expected value and 

the variance of the number of functional servers at the node iS  are  

(

1

)( ) ( ( )) ( ),
i

i

i

i

m
i

z i

z

i zz p tM t M z t


  2 ( )

2

2

1 1

( )( ) ( ( )) .( ) ( )
i i

i i i

i i

m m
i i

z i ii z z

z z

z p t z p tt D z t
 

 
     

 
   

4. The process of changing the number of customers at the nodes 

The process 1 2( ) ( ( ), ( ),..., ( ))nk t k t k t k t  of changing the number of customers  

at the nodes related to the customer service process, to customer routing between 

network nodes and to traffic rerouting or to traffic destruction due to the influence 

of negative customers is a continuous-time Markov chain with a finite state space. 

The process ( )k t  is determined by the service process at nodes and therefore  

depends on the number of functional servers. This means that ( )k t  is determined 

by ( ).z t  To sum up, it may be said ( )k t  is a nested process with respect to ( ).z t  

Probabilities ( ) ( )
i

i

zp t  are assumed to be predetermined from (2).  

Theorem 1. In the asymptotic case of a large number of customers  

K   the probability density function ( , )p x t  of the random process 

1 2 ( )( ) ( )( )
( ) , , ..., nk tk t k tk t
t

K K K K
  

   
 

 provided that it is differentiable with respect 

to t  and twice continuously differentiable with respect to ,ix  1, ,i n  satisfies up to 
2( ),  where 1,K   the Fokker-Planck-Kolmogorov equation 



Asymptotic analysis of a closed G-network of unreliable nodes 95

    
2

1 , 1

( , )
( , ) ( , ) ( , ) ( , ) ,

2

n n

i ij

i i ji i j

p x t
A x t p x t B x t p x t

t x x x



 

  
  

      (3) 

with drifts ( , )iA x t  and diffusion coefficients ( , ):ijB x t  

  ( )
0 0 0

1 1 0

( , ) 1 ( ) min , ( )( )
j

j

j

mn n
j

i i i i j j j ji ji ijz

i j z

A x t x p p x w p t p p     

  

 
       

 
   

   ( )

0 1

min , ( ) (1 ( )),
i

i

i

m n
i

i i i ij jz

z j

x w p t p x 

 

    (4) 

  ( )
0 0 0

1 1 0

( , ) 1 ( ) min , ( )( )
j

j

j

mn n
j

ii i i i j j j ji ji ijz

i j z

B x t x p p x w p t p p     

  

 
       

 
   

   ( )

0 1

min , ( ) (1 ( )),
i

i

i

m n
i

i i i ij jz

z j

x w p t p x 

 

    (5) 

  ( )

0

( , ) min , ( )( ),
i

i

i

m
i

ij i i i ji jiz

z

B x t x w p t p p  



  ,i j  

ij  is the Kronecker delta, 
1,  0,

( )
0,  0,

x
x

x



 


 is the Heaviside step function. 

Proof. Denote iI  as n-vector with zero components excluding i-th, that is equal 

to 1. The assumptions made in the formulation of the problem determine that in  

a short time 0t   Markov process ( )k t  can make one of the following transitions 

to the state ( , ):k t t   

1) from the state ( , )ik I t  with probability 

 0 0

1

( ) 1 ,
n

i i

i

p K k t t o t 



 
     

 
  

that corresponds to the arrival of a positive customer from 0S  to ,iS  1, ;i n   

2) from the state ( , )ik I t  with probability 

     

0 0

1

( )
0

0

( ) 1

min ( ) 1, ( ) ( ) (1 ( ( ))) ,
i

i

i

n

i i

i

m
i

i i i i ij jz

z

p K k t t

k t z t p t p p k t t o t



 









 
    

 

      




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which means the completion of customer service in the node iS  and customer 

transition to external environment 0 ,S  or the arrival of a negative customer into 

the node iS  from the source 0 ,S  or the transition of the customer as a negative 

from iS  to ,jS  when jS  does not contain customers, , 1, ;i j n  

3) from the state ( , )i jk I I t   with probability 

   ( )  

0

min ( ) 1,  ( ) ( ) ,
i

i

i

m
i

i i i ijz

z

k t z t p t p t o t 



     

which means the customer served in iS  transferred to jS  as positive, , 1, ;i j n  

4) from the state ( , )i jk I I t   with probability 

   ( )

0

min ( ) 1,  ( ) ( ) ,
i

i

i

m
i

i i i ijz

z

k t z t p t p t o t 



     

which means the customer served in 
iS  transferred to jS  as negative, , 1, ;i j n  

5) from the state ( , )k t  in case of no customers transfer with probability 

 

   

0 0 0 0

1 1 1 1

( )

, 1 0

( )

1 0

1 ( ) ( )

min ( ), ( ) ( ) (1 ( ( )))

min ( ), ( ) ( ) ;

i

i

i

i

i

i

n n n n

i i i i

i i i i

mn
i

i i i ij jz

i j z

mn
i

i i i z

i z

p K k t p K k t

k t z t p t p k t

k t z t p t t o t

 

 



 

   



 

 

    
            

  


   



   





 

6) from other states with probability  .o t  

In regard to the transitions listed above in the short time ,t  using the law of to-

tal probability, the following system of Kolmogorov difference-differential equa-

tions is valid for the probability ( ,  ) ( ( ) ):P k t P k t k   

   

0 0 0 0

1 1 1 1

( )
0

, 1 0

( , )
( ) 1 ( , ) ( ) 1

min ( ) 1,  ( ) ( ) (1 ( ( ))) ( ,  )
i

i

i

n n n n

i i i i i

i i i i

mn
i

i i i i ij j iz

i j z

dP k t
p K k t P k I t p K k t

dt

k t z t p t p p k t P k I t

 

 

 

   



 

   
             


     



   


 



Asymptotic analysis of a closed G-network of unreliable nodes 97

 

 

( )  

, 1 0

( )

, 1 0

0 0 0 0

1 1 1 1

min ( ) 1, ( ) ( ) ( , )

min ( ) 1, ( ) ( ) ( , )

( ) ( )

min ( ), (

i

i

i

i

i

i

mn
i

i i i ij i jz

i j z

mn
i

i i i ij i jz

i j z

n n n n

i i i i

i i i i

i i i

k t z t p t p P k I I t

k t z t p t p P k I I t

p K k t p K k t

k t z t





 





 



 

 

   

    

    

    
            







   

 

 

( )

, 1 0

( )

1 0

) ( ) (1 ( ( )))

min ( ), ( ) ( ) ( , ).

i

i

i

i

i

i

mn
i

ij jz

i j z

mn
i

i i i z

i z

p t p k t

k t z t p t P k t







 

 

 


 







 

The last equation cannot be solved analytically for a large .n  In connection 

with this, irrespective of the time ,t  consider the important asymptotic case of  

a large number of customers 1K ≫  [13, 14]. Suppose that we are interested in the 

properties of the process ( )k t  as K  becomes very large. The vector of relative  

variables 1( ) ( )t k t K   in a short time interval undergoes a state change by ,ie  

where ,i ie I   
1.K   In the case when K   we have 0   and the vector 

( )t  will be the continuous-time continuous-state Markov process with a probability 

density function ( , ).p x t  The points x are located at the n -dimensional lattice  

vertex of the set  1 2 1
( , , ..., ) :  0,  1, ,  1

n

n i ii
X x x x x x i n x


      at a distance of 

  from each other. At ,K   the distance between the vertices decreases, 0,   

since we can also assume that the limiting distribution of ( )t  is continuous.  

The density ( , )p x t  satisfies the asymptotic relation lim ( , ) ( , ),n

K
K P k t p x t


  .x X  

Realizing the asymptotic transition for the previous equation, we obtain the follow- 
 

ing partial differential equation: 

 

     

0 0

1 1

0 0 0 0

1 1 1

( )
0

, 1 0

0 0

1

( , )
1 ( , ) ( , ) +

( , ) 1

min , ( ) (1 ( )) ( , ) ( , )

min

i

i

i

n n

i i i

i i

n n n

i i i i

i i i

mn
i

i i i i ij j iz

i j z

n

i i

i

p x t
K p x p x e t p x t

t

p p x e t K p x

x w p t p p x p x e t p x t

x
p



 

 

 



 

 

  



 





 
    

  

  
        


     




 

 

  




   ( )

0

, 1 0

,
( ) (1 ( )) ( , )

i

i

i

mn
i i i

i ij j iz

i j z i

w
p t p p x p x e t

x


 

 
      


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   

 

   

 

( )  

, 1 0

( )  

, 1 0

( )

, 1 0

( )

min , ( ) ( , ) ( , )

min ,
( ) ( , )

min , ( ) ( , ) ( , )

min ,
( )

i

i

i

i

i

i

i

i

i

i

mn
i

i i i ij i jz

i j z

mn
i i i

i ij i jz
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If ( , )p x t  is a twice continuously differentiable function with respect to ,x  then we 

can use the Taylor series of functions ( , ),ip x e t  ( , ),i jp x e e t   ( , ),i jp x e e t   

, 1, ,i j n  formed by the first two terms. Substituting this series into the last  

equation and grouping terms, we obtain that ( , )p x t  satisfies the multidimensional 

Fokker-Planck-Kolmogorov equation (3) with drifts (4) and diffusion coefficients 

(5) [13, 14, 17]. The error in this approximation is no more than 2.  ∎  

5. System of differential equations for the first-order  

and second-order moments of the process of changing  

the number of customers 

The characteristic function ( , ) ( , )
n

I xt e p x t dx 


 
ℝ

 of a stochastic process, 

1,I    gives as much information about the process as the probability density. 

Multiplying both sides of (3) by ,I xe  
 then integrating over x  and taking into  

account certain initial and boundary conditions for equation (3), we derive the 

equation (6) for the characteristic function [15, 16]: 

 
1 1 1

( , )
( , ) ( , ) ( , ) .

2n

n n n
I x

i i i j ij

i i j

t
I A x t B x t p x t e dx

t

  
  



  

     
   

 
ℝ

 (6) 

According to one of the most important properties of the characteristic function,  

it was found that the system of differential equations for the first-order and second-

order moments of the state vector elements ( )i t  is 

 
 (1) 2

1 (1)

0

( )( ) ( , )
( ( )),  1, ;

ii
i

i

dM td t t
I A t i n

dt dt t


  








   

 
 (7) 
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I

dt dt t
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 
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




  

  
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 (8) 

Mathematical expectation  ( )iM t  and variance  2 2( ) ( )
iz it t     

 2(1,1) (1)( ) ( )ii it t    in the general case are deterministic functions of time that  

determine, respectively, the expected trajectory of the process and the scattering 

around it, 1, .i n  Interval  (1) ( ) ( )i it t   is the interval in which the implementa- 

tions of process ( )i t  fall with a probability of about 70%. 

6. Numerical example 

Consider the Markov G-network consisting of unreliable nodes ,iS  1,4,i   and 

source 0 .S  Let the total number of customers served in the network be equal to 

10 000.K   Let the G-network be specified by the following parameters: the non- 

zero elements of transition matrix are 01 0.45,p   
01 0.05,p   

02 0.48,p   
02 0.02,p   

13 0.57,p   13 0.1,p   10 0.33,p   24 0.65,p
   24 0.1,p

   20 0.25,p   31 0.99,p
   

31 0.01,p
   42 0.99,p

   42 0.01;p
   the arrival rate is 0 0.003;   the number of 

servers in network nodes are 1 2 3 4 4;m m m m     the service rates are 1 0.5,   

2 0.7,   
3 0.15,   

4 0.15;   the server failure rates in the systems are 1 0.1,   

2 3 0.2,   4 0.1;   the repair rates in the systems are 1 0.4,  2 0.2,  3 0.3,   

4 0.2;   the initial conditions are 
( ) (0) 0;i
jp   (1) (0) 0,i   (1,1) (0) 0,ij   , 1,4.i j   

First of all, the non-stationary probability distribution ( )
( ),

i

i

zp t  1, ,i n  should be 

found by solving (2) with initial condition as above. The result is cumbersome,  

so it is not presented in the article. Obviously, there is a stationary probability  

distribution of the process ( ),iz t  1, ,i n  which determines the average relative 

time during which the process is in each of the states. For example, for the node 

1S  the result is 
(1)
0lim ( ) 1/341,

t
p t


  

(1)
1lim ( ) 4 /341,

t
p t


  

(1)
2lim ( ) 16/341,

t
p t


  

(1)
3lim ( ) 64 /341,

t
p t


  (1)

4lim ( ) 256 /341.
t

p t


  This means that in a steady state, all 

servers in system 1S  are functional 256 /341 of the total time. The calculation 

results show that it is most likely that in the steady state, 3S  and 4S  will have  

4 functional servers, and 2S  will have from 0 to 4 functional servers with equal 

probabilities. The expectation and variance of the number of functional servers  

at the network nodes can be calculated using the probabilities ( )
( ),

i

i

zp t  1, .i n   
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The calculation result for the node 2S  is presented in Figure 1, where the expecta- 

tion 
2
( )zM t  is a solid line, the limits of the interval 

2 2
( ) ( )z zM t t  is the dashed 

line. 
 

 

Fig. 1. The expectation and variance of the number of functional servers at 2S  

Let us determine the expected number of customers in the network nodes and its 

variance. It is necessary to write down the system of differential equations (7), (8). 

Due to the form of drifts ( , )iA x t  and diffusion coefficients ( , ),ijB x t  the solution of 

the system (7), (8) can be found without difficulty using numerical methods, 

, 1,4.i j   Figure 2 shows the expected trajectory of the number of customers in the 

node 2S  (solid line) and the variance of this number (dashed line).  

 

 

Fig. 2. The expectation and variance of the number of customers at 2S  
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Numerical and graphical results for other nodes can be obtained in a similar 

way. Analyzing the results, we see that each of the nodes requires a sufficiently 

large transition period of time to reach the steady state in terms of mathematical 

expectation and variance. It was found that the longer the duration of the transition 

period is, the greater the number of customers in the network. 

Figure 3 shows the pairwise correlation of the number of customers in the  

network nodes, excluding the external environment 0 .S  It is interesting to observe 

the change and the establishment of correlation in the transient state. 

 

 

Fig. 3. The pairwise correlation of the number of customers in the network nodes 

We conclude that in the steady state, the pairwise linear relationship between 

the number of customers can be characterized as high negative for 2S  and 3 ,S  as 

moderate negative for 2S  and 4 ,S  3S  and 4 ,S  and as weak for the following node 

pairs: 1S  and 4 ,S  1S  and 3 ,S  1S  and 2 .S  

7. Conclusions 

In this paper, an asymptotic method was presented for studying a closed  

exponential G-network of unreliable queueing nodes under a limiting condition of 

a large number of customers. The process of changing the number of functional 

servers in the network nodes was modelled by the birth-death process. As a result, 

the expectation and the variance of the number of functional servers and of the 

number of customers in each network node can be found at any fixed time in both 

the transient and steady state. The presented technique allows us to investigate  

the correlation between the number of customers in different nodes with time.  

The areas of implementation of research results are the design of G-networks, 

solving problems of their optimization and using them as models.  
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