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Abstract. A numerical analysis of the thermal damage process that proceeds in biological 

tissue during laser irradiation is presented. Heat transfer in the tissue is assumed to be tran-

sient and two-dimensional. The internal heat source resulting from the laser irradiation 

based on the solution of optical diffusion equation is taken into account. Changes in tissue 

oxygen distribution resulting from temperature changes are analyzed using the Krogh  

cylinder model with Michaelis-Menten kinetics. A Hill model was used to describe the oxy-

hemoglobin dissociation curve. At the stage of numerical realization, the boundary element 

method and the finite difference method have been applied. 
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1. Introduction  

A variety of phenomena can occur in the tissue exposed to the laser irradiation, 

e.g. different chemical reactions and tissue damage resulting from temperature ele-

vation. For the latter, the values of some thermophysical and optical parameters of 

the tissue can change [1, 2]. The perfusion coefficient and the scattering coefficient 

are particularly notable, which are often used as indicators of tissue damage. It is 

also worth noting that the perfusion coefficient, which changes its value under the 

influence of temperature or thermal injury, may indirectly affect other parameters 

related to blood flow, e.g., in capillaries, where oxygen passes to surrounding  

tissues. This means that the oxygen level in tissues changes together with increas-

ing temperature and/or tissue damage [3]. 

The aim of this study was the numerical analysis of thermal damage of tissue 

under the impact of laser beam. In particular, the influence of thermal damage on 

the value of tissue parameters (perfusion and scattering coefficients) and on oxygen 
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transfer to the tissue was considered. In particular, two combined models are con-

sidered. The first one is related to the impact of the laser on biological tissue,  

resulting in an elevation in tissue temperature. As a result, the tissue undergoes 

thermal damage, whereby some tissue parameters are altered. The analysis was 

based on the Pennes bioheat transfer equation, laser energy deposition was estimat-

ed using the optical diffusion equation, while thermal damage was estimated based 

on the Arrhenius injury integral [2, 4, 5]. 

The variable perfusion coefficient was used to determine the capillary blood  

velocity, one of the basic parameters of the second model related to the oxygen  

distribution in the tissue. The geometry of this model is based on the concept of the 

Krogh cylinder, and the oxyhemoglobin dissociation curve in the form of the Hill 

model was taken into account. Two variants of calculations were taken into account: 

with and without the mitochondria clustering phenomenon. As is known, mito-

chondria are the main consumers of oxygen, which is necessary for the production 

of ATP. In case of oxygen deficiency, they tend to gather near capillaries, where 

access to oxygen is facilitated. 

2. Governing equations 

Transient heat transfer in the rectangular 2D homogeneous biological tissue 

domain  (Fig. 1 left) is described by Pennes bioheat transfer in the form [2, 6, 7] 

 
2

: perf met lascT T Q Q Q     x ɺ  (1) 

where T [K],  [Wm1 K1], c [Jm3 K1] are the temperature, the thermal conductivity, 

volumetric specific heat of the tissue, respectively, while Qperf [Wm3], Qmet [Wm3] 

and Qlas [Wm3] are the internal heat sources related to perfusion, metabolism and 

laser energy deposition. Equation (1) is supplemented by the convection boundary 

condition on the boundary 0 (external surface of the tissue) and the adiabatic  

condition on the remaining part boundary c . The initial distribution of temperature 

is also known. 
 

 

Fig. 1. The domains considered for the thermal and oxygen distribution model 
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The internal heat sources Qperf  and Qlas are described by the formulas [4-6] 

  ( , ) ( , ) , ( , ) [ ( ) ( )] ( )perf B B las a c dQ t c w T T t Q t p t      x x x x x  (2) 

where cB [Jm3 K1] is the volumetric specific heat of the blood, TB corresponds to 

the arterial blood temperature, w [s–1] is the perfusion coefficient, μa [m
–1] is the 

absorption coefficient, c and d [Wm–2] are the collimated and diffuse parts of 

the total light fluence rate, respectively, while p(t) is the function equal to 1 when 

the laser is on and equal to 0 when the laser is off. 

The collimated fluence rate part c is determined on the basis of the Beer- 

-Lambert law, namely [1, 4] 

 
2
2

0 12

2
( ) exp exp( )

( /2)
c t

x
x

d

 
     

 
x  (3) 

where 0 [Wm–2] is the surface irradiance of laser, d is the diameter of the laser 

beam, and t
  [m–1] is the attenuation coefficient given as ( s

  [m
–1] is the effective 

scattering coefficient) 

 t a s
       (4) 

To determine the diffuse fluence rate d , the optical diffusion equation should 

be solved [8, 9] 

 
1

: ( ) ( ) ( ) 0
3

d a d s c

t

 
           

x x x x  (5) 

The elevation of tissue temperature due to laser energy deposition may result in 

thermal damage, the degree of which is determined by Arrhenius formula [4, 6, 10] 
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where R [J mole–1K–1] is the universal gas constant, E [J mole–1] is the activation 

energy and A [s–1] is the preexponential factor. The criteria for tissue necrosis are 

Arr(x) ≥ 1 and/or Arr(x) ≥ 4.6. 

Thermal tissue damage usually results in alteration of the values of some tissue 

parameters. In this work, the perfusion coefficient w and the effective scattering 

coefficient s
  are treated as thermally damage-dependent, and their values are  

estimated on the basis of the following formulas [5] 
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where w0 [s–1] is the initial perfusion coefficient, mi are polynomial coefficients 

while s nat
  and s den

  are the values of the effective scattering coefficients for  

native and thermally damaged tissue. 

In Figure 1 right, the oxygen distribution model is presented. This model is 

based on the concept of the Krogh cylinder in which Rc and Rt are the radiuses of 

the capillary and tissue cylinder, respectively, L is the length of the cylinder, ub is 

the blood velocity in the capillary and r and z are the radial and axial coordinates. 

The distribution of the partial pressure in the tissue subdomain Pt is described 

by the equation (in cylindrical coordinates) [11-15] 

 2 0

0

: ( ), ( ) t
t t t t t t t

t
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
 (8) 

where Kt [(cm2 s–1)(cm3
O2 cm–3 mmHg–1)] is the Krogh diffusion coefficient, M0 

[cm3
O2 cm–3 s–1] is oxygen demand while P0 [mmHg] is the partial pressure that 

corresponds to half the maximum oxygen consumption. It should be pointed out 

that Mt (Pt) is the oxygen consumption model in form of the Michaelis-Menten  

kinetics. 

Equation (8) is supplemented by the following boundary conditions [11, 16] 
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In the axial direction, the equation with initial condition is assumed [11] 

  ( , ) , 0 :b b Hb b b t b b inletQ S P z k P P z P P        (10) 

where SH is hemoglobin saturation, Pb [mmHg] is the partial pressure of oxygen  

in the capillary, Qb [cm3 s–1] denotes the blood flow rate in the capillary, while b 

[cm3
O2 cm–3

blood] is the oxygen carrying capacity of the blood at 100% saturation. 

After the determination of the hemoglobin saturation SHb on the basis of (10), 

the partial pressure in the capillary Pb is estimated as the inversion of the Hill  

model of the oxyhemoglobin dissociation curve [14, 17, 18] 
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where n denotes the Hill coefficient while P50 is the pressure corresponding to 50% 

hemoglobin saturation. 

As was already mentioned, the perfusion coefficient is assumed to be damage-

dependent (cf. equation (7)), but changes in tissue perfusion also affect parameters 

associated with the oxygen distribution model. In the current work, it is assumed 

that (ub denotes the blood velocity in capillary [cm s–1]) [3, 11] 
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3. Method of solution  

At the stage of numerical realization, the 1st scheme of the boundary element 

method (BEM) for the 2D transient bioheat equation has been used, while the  

optical diffusion equation and the oxygen distribution model have been solved by 

the finite difference method (FDM). 

For the transient bioheat diffusion problem, the boundary integral equation  

corresponding to transition t f–1  t f
  is of the form (assuming constant time step t) 
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where QV denotes the sum of internal heat sources associated with perfusion,  

metabolism, and laser irradiation (c.f. equation (1)), T 
 and q* are the fundamental 

solution and the heat flux resulting from the fundamental solution, respectively  

and B() is the coefficient from the interval (0, 1). Detailed information on BEM 

can be found in [19]. 

To determine the source function Qlas at the internal nodes, for each time step, 

the optical diffusion equation (5) must be solved. For this reason, the FDM is  

applied. The global and local numeration of the nodes, which is assumed, is shown 

in Figure 2b. 

The difference equation for the central node of the stencil can be written in the 

form 
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where R0e are the resistances between the central node and the remaining nodes of 

the stencil. 

In the oxygen distribution model, for the radial problem (cf. equations (8) and (9)) 

the finite difference method has also been applied with a grid based on three-point 

stencils (Fig. 2c). As the problem is non-linear, the Jacobian has been determined [3] 
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where nr is the number of nods in the radial direction, while 
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After the determination of the partial pressure in the tissue Pt in the radial direc-

tion for a given node m, the saturation SHb is calculated in the next node m +1 on the 

basis (cf. equation (10)) 

  , 1 , , , , 0,1,...,z
Hb m b m t m Hb m

b b

kh
S P P S m nz

Q
     
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where nz is the number of nodes in the axial direction. Then the partial pressure  

in the capillary Pb in node m + 1 is also determined using equation (11). 

More details on the numerical realization of the FDM can be found in [20, 21]. 

 

 

Fig. 2. Discretization for BEM (a) and stencils for optical task (b) and oxygen  

distribution task (c) 
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4. Results of calculations  

In the first stage, the aim of the research was to analyze the destructive changes in 

tissue domain of the size 44 cm during laser irradiation (cf. Fig. 1 left). The inte-

rior of domain has been divided into 1600 internal constant cells, while the external 

boundary has been divided into 160 constant elements. In the calculations, the follow- 

ing values of the thermophysical and optical parameters of tissue and blood were 

assumed:  = 0.609 Wm–1 K–1, c = 4.18 MJm–3 K–1, w0 = 0.005 s–1, Qmet = 250 Wm–3, 

a = 0.4 cm–1, snat
  = 10 cm–1, sden

  = 40 cm–1, cB = 3.9962 MJm–3 K–1, TB = 37°C. 

It should be pointed out that the optical parameters of tissue (a , snat
  and sden

 ) 

are typical for near-IR irradiation on soft tissue, e.g. Nd:YAG laser of 1064 nm, 

which is used for prostate coagulation [5].  

In the boundary-initial conditions for the thermal problem the following date were 

used:  = 10 Wm–2 K–1 (convection coefficient), Tamb = 20°C (ambient temperature), 

Tinit = 37°C (initial tissue temperature) while for the laser impulse: 0 = 30 W cm–2, 

d = 2 mm, texp = 25 s (duration of the laser impulse). 

In the part of the model related to tissue damage, the data assumed were as  

follows: A = 3.1e+98 s–1, E = 6.27e+5 J mol–1, R = 8.314 J mol–1 K–1, additionally, 

the polynomial coefficients in (7) were assumed as: m0 = 1, m1 = 25, m2 = –260  

for 0  Arr  0.1, m0 = 1, m1 = –1, m2 = 0 for 0.1 < Arr  1 and m0 = m1 = m2 = 0 

for Arr > 1 [5]. 

For the oxygen distribution model, the data assumed were: Rc  =  3.25  µm,  

Rt  =  32.5  µm, L  =  162.5  µm, Kt  =  9.4e–10  (cm2 s–1)(cm3
O2cm–3 mmHg–1), M0  = 

= 1.12e–3 cm3
O2 cm–3 s–1, k = 6.25e–9 (cm2 s–1)(cm3

O2 cm–3 mmHg–1), P0 = 1 mmHg, 

Pb inlet = 100 mmHg, b = 0.2 cm3
O2 cm–3

blood , n = 2.7, P50 = 26 mmHg [11, 16, 17]. 

In the first step, the task related to determining the temperature distribution,  

tissue damage, and damage-dependent parameters was solved. Figures 3-5 are  

associated with tissue temperature and damage. In Figure 3 the distribution of tem-

perature for 15, 25, and 60 s is presented, while in Figure 4 the Arrhenius integral 

distribution is shown. In Figure 5 the history of temperature and tissue damage at 

control points N0-N4 is shown (cf. Fig. 1 left). It is visible that the area of tissue 

damage continues to grow even after the laser pulse has stopped. This is due to the 

heat wave migrating into the tissue. The degree of tissue damage is calculated  

using the Arrhenius scheme, which assumes that the tissue damage is irreversible. 

The value of the Arrhenius integral has an impact on the values of the perfusion 

coefficient and the effective scattering coefficient, which are presented in Figure 6 

(cf. equation (7)). The perfusion coefficient increases at the early stage of the pro-

cess when the temperature is moderate. It is due to vasodilation. Then, as tissue 

damage progresses, perfusion decreases due to vascular damage. For the effective 

scattering coefficient, the increase is visible along with the increase in tissue  

damage, which is usually associated with a visual effect of tissue ‘whitening’. 
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Fig. 3. Temperature distribution for time 15, 25 and 60 s 

 

Fig. 4. Distribution of tissue damage for time 15, 25, and 60 s 

        

Fig. 5. History of temperature and Arrhenius integral at nodes N0-N4 
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Fig. 6. History of perfusion coefficient w and effective scattering coefficient s
  at nodes N0-N4 

Based on the history of the perfusion coefficient, the control point N3 was  

chosen as the one in which the value of blood velocity in the capillary ub is calcu-

lated (cf. Fig. 1 left, Fig. 6, equation (12)). At point N3 
, the maximum perfusion 

value is reached at 21 s, then decreases to 0.0011 s–1 after 60 s, so it can be said 

that this point corresponds to an area of tissue not completely damaged. 

Since the oxygen distribution model was assumed to be a steady-state problem, 

calculations were performed for selected times of the perfusion coefficient history, 

i.e. 0, 21, 20, 40, 50, 60 s. The results obtained are shown in Figure 7. For the radi-

al direction, one curve is visible for z = 0, which was identical in each simulation 

(identical Pb inlet value assumed in each simulation), while the remaining curves are 

for z = L/2. For the axial direction, the curves show the capillary pressure, i.e. Pb . 

They indicate the occurrence of hypoxia between 40 and 50 s. 

 

        

Fig. 7. Partial pressure of the oxygen distribution in the radial and axial directions 

As already mentioned, calculations were also performed taking into account  

the phenomenon of mitochondria clustering [11]. The model incorporates this  

phenomenon by assuming two zones in the tissue subdomain. In the zone adjacent 
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to the capillary (i.e. for Rc  r  (Rt – Rc)/2) the value of oxygen demand 4×M0 were 

assumed while in the second zone (ie. for (Rt – Rc)/2 < r  Rt): M0 = 0. 

Comparisons of the values obtained from the basic variant of the calculations, 

with the values of the calculations for the variant with clustering of mitochondria, 

are shown in Figure 8. 

 

        

Fig. 8. Partial pressure of the oxygen distribution in radial and axial directions for the case 

with and without mitochondria clustering 

5. Conclusions 

The problem considered in this paper is a multiscale problem because the two 

models used different dimensions (millimeters for the thermal model vs. micro- 

meters for the oxygen distribution problem). Therefore, one may say that the results 

show the effect of laser beam irradiation on biological tissue at different levels.  

For the thermal model, the tissue damage process and the resulting changes in the 

values of the perfusion coefficient and the effective scattering coefficient are shown. 

The values of capillary blood velocity ub , one of the parameters of the oxygen  

distribution model, were determined on the basis of the first of these parameters. 

The results show how changes in ub affect the distribution of the partial pressure 

of oxygen both in the capillary and in the tissue surrounding the capillary. It should 

be noted that the partial pressure at the capillary entrance Pb inlet was assumed to be 

a constant value. Under conditions of thermal injury and reduced perfusion, there is 

also damage to the vasculature that is closely related to decreased blood pressure.  

It is also worth noting that for the assumed damage-dependent perfusion coefficient 

function (cf. equation (7)), the range 0.1 < Arr  1 corresponds to vasodilation 

which in the model related to the temperature distribution and determining the  

degree of tissue damage means an increase in perfusion, while in the oxygen distri-

bution model it could mean a change in diameter of the capillary Rc .  

Figure 8 shows a comparison of two computational variants – with and without 

mitochondria clustering. It can be seen that for the case including this phenomenon, 
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there is a greater decrease in the partial pressure of oxygen in the part of the tissue 

adjacent to the capillary. A larger decline in the axial direction is also seen, result-

ing in an earlier drop in Pb to zero, i.e. the occurrence of hypoxia. 

Temperature also affects oxygen transport to the tissue through the so-called Bohr 

effect, i.e. an increase in temperature causes the right shift of the oxhemoglobin 

dissociation curve. Numerical analyses of this phenomenon have been presented  

in [3], while in the current work the ODC parameters i.e. P50 and n have been taken 

to be constant. 

Finally, note that the current work considers the process of tissue damage due to 

elevated temperature. However, mixed photothermal and photochemical phenome-

na often occur with laser irradiation on tissue. This occurs, for example, during 

photodynamic therapy. For this reason, to reproduce these type of processes more 

accurately, the oxygen distribution model should be supplemented with equations 

related to chemical reactions in tissue [18]. Furthermore, due to the variation in  

individual characteristics, it seems reasonable to use sensitivity analysis methods  

or interval arithmetic. 
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