
Journal of Applied Mathematics and Computational Mechanics 2020, 19(2), 17-30
www.amcm.pcz.pl p-ISSN 2299-9965
DOI: 10.17512/jamcm.2020.2.02 e-ISSN 2353-0588

THE FOUR-SIDED LID DRIVEN SQUARE CAVITY USING
STREAM FUNCTION-VORTICITY FORMULATION

Shobha Bagai1, Manoj Kumar2, Arvind Patel2

1 Cluster Innovation Centre, University of Delhi, Delhi, India
2 Department of Mathematics, Faculty of Mathematical Sciences

University of Delhi, Delhi, India
shobhabagai@gmail.com, manojransiwal@gmail.com, arvindpatelmath09@gmail.com

Received: 20 January 2020; Accepted: 13 May 2020

Abstract. In this paper, an unsteady 2-D incompressible fluid flow with heat and mass
transfer in a four-sided lid driven square cavity is investigated numerically. The top, bottom,
left, and right walls of the square cavity move to the right, left, downward and upward
respectively. All four sides of the cavity move with a uniform velocity. The flow variables
are simulated below the critical Reynolds numbers with isothermal and mass-transfer
conditions in the square cavity. We have used a streamfunction-vorticity (ψ−ξ ) formulation
to investigate the fluid flow in terms of flow variables ψ , ξ , T and C at low Reynolds
numbers (Re). The Prandtl number (Pr) and Schmidt number (Sc) have been chosen as 6.62
and 10, 50, 100, 150 respectively, in order to calculate the numerical solutions of T and C.
The matrix method has been used to evaluate the stability and convergence of the numerical
scheme. The conditions obtained from the matrix method have been used to arrive at the
numerical solutions with desired accuracy.
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1. Introduction

Numerical simulations of the convective heat and mass transfer problem in a lid
driven square cavity have been widely studied due to their broad applications in engi-
neering and physical sciences. Some of the applications involve [1] cooling of elec-
tronic devices, float glass production, drying technologies etc. Heat transfer is mainly
concerned with the physical process of the transport of thermal energy due to a tem-
perature gradient in an energy equation. Mass transfer is an important topic with
vast industrial applications in mechanical, chemical and aerospace engineering. Few
of the applications involving mass transfer are absorption and desorption, solvent
extraction, evaporation of petrol in internal combustion engines etc.

Ambethkar and Kushawaha [1] have numerically investigated the problem of heat
and mass transfer in a rectangular four-sided lid-driven cavity. Ghia et al. [2] have
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used the vorticity-stream function formulation to investigate the lid driven square
cavity problem in which the top wall is moving to right while all other walls are kept
stationary. Taylor [3] discussed the scraping of viscous fluid from a plane surface.
The book of Ottino [4] describes a unified treatment of the mixing of fluids from
a kinematical viewpoint, which helps to understand the various mixing problems de-
tected in nature and technology. Luo and Yang [5] have studied the two-sided square
cavity problem with an aspect ratio 1.96 with or without heat transfer in terms of
streamfunction (ψ) and vorticityfunction (ξ ). Ben-Nakhi and Chamkha [6] have in-
vestigated the fluid flow around a fine pipe placed in the middle of a square cavity
with internal heat generation. Wahba [7], Kumar et al. [8] have numerically investi-
gated the flow behaviour within a two-sided and four-sided lid driven cavity. Wabha
has found that the flow field bifurcates from a stable symmetric state to a stable asym-
metric state at critical Reynolds numbers 1073 and 129 for a two-sided and four-sided
lid driven cavity respectively. Perumal and Dass [8, 9] and Azwadi et al. [10] have
investigated the steady state solutions of two-dimensional, two- and four-sided lid
driven cavity flows in a square cavity using the Lattice Boltzmann Method, the FAS
Multigrid method and a time splitting method of the Adams-Bashforth scheme re-
spectively at low Reynolds numbers. Sivasankaran et al. [11] have numerically stud-
ied the heat and mass transfer in a top side lid-driven square cavity with sinusoidal
heating on its vertical walls. Ambethkar and Kumar [12] have investigated the 2-D
unsteady viscous incompressible flow with heat transfer inside a two-sided lid driven
square cavity whose top and bottom walls move in opposite directions. Romanò et
al. [13] have investigated the incompressible steady solution of a three dimensional
flow in a two-sided anti-parallel lid-driven cavity with spanwise-periodic boundary
conditions and an aspect ratio Γ = 1.7 using the spectral method on 1283 grid points.
Wu et al. [14] have studied the trajectories of finite-size particles in a two-sided lid-
driven cavity experimentally. They have found that when the flow is steady and three-
dimensional, the neutrally buoyant finite-size particles are attracted to periodic orbits.
Romano et al. [15–17] have discussed a generic mechanism for finite size coherent
particle structures in a two-sided lid-driven cavity. The streamfunction-vorticity for-
mulation, ADI scheme, and Matrix method of analysis are discussed in the books
written by Ghoshdastidar [18], Chapra and Canale [19], and Smith [20] respectively.

The main aim of the present work is to investigate the heat and mass transfer
inside a four-sided lid driven square cavity using the streamfunction-vorticity formu-
lation. The Alternating-Direction-Implicit (ADI) scheme has been used to discretize
the governing equations for the considered problem. To achieve the desired accu-
racy and prove the stability and convergence of the numerical scheme, we have used
the matrix method.
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2. Mathematical formulation

The physical model of a four-sided lid driven square cavity with heat and mass
transfer of unit size (along with boundary conditions) is illustrated in Figure 1. All
four walls of the cavity are maintained at a uniform speed, due to which four vortices
of equal size develop symmetrically to both the diagonals namely Top Primary Vortex
(TPV), Bottom Primary Vortex (BPV), Left Primary vortex (LPV) and Right Primary
Vortex (RPV) as shown in Figure 1. The top and bottom primary vortices move in
a clockwise direction, while the left and the right vortices move in an anti-clockwise
direction. We have considered the concentration to be zero on the left and right wall
of the square cavity, while the top and bottom walls are kept at a constant but different
mass flux.
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Fig. 1. Four-sided lid driven square cavity

The governing equations of a four-sided lid driven square cavity with heat and
mass transfer consist of a continuity equation, x and y momentum equations, energy
and mass-transfer equations [12]. The dimensionless governing equations in terms
of streamfunction ψ and vorticity ξ using streamfunction-vorticity formulation [18,
p. 121] for the considered problem can be expressed as follows:
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where ψ , ξ , T and C are the stream function, vorticity, temperature and concentration
respectively. The non-dimensional parameters are Reynolds number Re =UL/ν , L is
the length of the square cavity, ν is kinematic viscosity; Prandtl number Pr = ν/α ,
α is thermal diffusivity; and the Schmidt number Sc = ν/D, D is mass diffusivity.
The boundary conditions are given by: lower plate moves leftwards ψ = 0,∂ψ/∂y =
= −1,∂ψ/∂x = 0,∂T/∂y = −1, ∂C/∂y = −1; the upper plate moves rightwards
ψ = 0,∂ψ/∂y = 1,∂ψ/∂x = 0,∂T/∂y = 1, ∂C/∂y = 1; the right plate moves
upwards, ψ = 0,∂ψ/∂y = 0,∂ψ/∂x = −1,∂T/∂x = 0,C = 0; the left plate moves
downwards ψ = 0,∂ψ/∂y = 0,∂ψ/∂x = 1,∂T/∂x = 0,C = 0.

3. Numerical discretization

The governing equations of the considered problem are discretized by using the
finite difference method, namely the Alternating-Direction-Implicit (ADI) method.
Using the finite difference formula [19, p. 883] and ADI Scheme, the discretized eqs.
(1)-(3) at different time steps are given by Ambethkar and Kumar [12, p. 462-463].
Similarly, the mass transfer equation (4) can be discretized as[
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These discretized equations are solved iteratively through an algorithm by stream
function-vorticity formulation [12, p. 467]. We solve the mass transport equation (4)
for C at all interior grid points after Step (5), and then calculate the local and average
Sherwood number after obtaining the average Nusselt-number.
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4. Stability and convergence of the numerical scheme

The matrix method is used to prove the stability and convergence of the considered
problem. Using the finite difference approximation formula described in [12, p. 464]
and assuming A∗ = D2

0,x, B∗ = D2
0,y, C∗ = D0,x, D∗ = D0,y; the discretized governing

equations can be expressed in matrix form as followsξ
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To prove the stability of the considered scheme by the matrix method [20], norm of
the above matrix must be less than or equal to 1. This requires ‖F1E1‖≤ 1, ‖F2E2‖≤
1 and ‖F3E3‖≤ 1. Now, proceding on the similar lines as desribed by Ambethkar and
Kumar [12] to prove the unconditional stability of the numerical scheme, we have∣∣ui, j∆xRe

∣∣≤ 2,
∣∣vi, j∆yRe

∣∣≤ 2, ∆t < Re∆x2;
∣∣ui, j∆xPr

∣∣≤ 2,
∣∣vi, j∆yPr

∣∣≤ 2, ∆t <
Pr∆x2; and

∣∣ui, j∆xSc
∣∣≤ 2,

∣∣vi, j∆ySc
∣∣≤ 2, ∆t < Sc∆x2.

5. Results and discussion

The numerical solutions of the unknown flow variables are calculated by using
finite difference method namely Alternating-Direction-Implicit (ADI) scheme at low
Reynolds numbers with suitable Prandtl number (Pr) and Schmidt number(Sc) for
the considered problem. The Prandtl number Pr = 6.62, T0 = 10 and C0 = 0 is fixed
throughout the calculation. This section presents the streamlines, isotherms, vorticity,
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concentration contours, locations of the streamline vortices inside the cavity, and the
horizontal, vertical velocities along the vertical, horizontal line through the geometric
center of the square cavity.

The streamline contours of the four-sided, lid-driven cavity have been depicted in
Figure 2 for different Reynolds numbers. At the end of numerical simulation, the four
vortices are generated as explained in Section 2. Figure 2 shows the streamfunction
values on these primary vortices are the same in magnitude but may have negative or
positive values. A positive value shows that the vortex is moving in an anti-clockwise
direction, while a negative value indicates the clockwise direction.
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Fig. 2. Streamline contours for four-sided lid-driven square cavity at different Reynolds numbers:
Re = 10, Re = 100, Re = 127, and Re = 200

The center of streamline vortices starts shifting towards anti-diagonal (the line
joining left-bottom corner and top-right corner of the square cavity) as the Reynolds
number increases from Re = 10 to 127. Table 1 presents the location of the centers
of the streamline vortices for the considered problem at different Reynolds num-
bers. The center of TPV starts shifting to the right and slightly downwards which
is at (0.613,0.840), and the RPV starts shifting upward and slightly to the left at
(0.840,0.613) as the Reynolds number increases from Re = 10 to 200. The center
of BPV starts shifting towards left and slightly upwards which is at (0.387,0.167),
and the LPV starts shifting towards right and slightly downwards at (0.167,0.387) as
the Reynolds number increases Re = 10 to 200. Notice that the center of streamline
vortices of BPV and LPV moves in opposite directions to TPV and RPV respectively
with an increase of the Reynolds number.
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Table 1. Locations of the centers of the streamline vortices for four-sided lid-driven square cavity
at different Reynolds numbers

Reynolds Top Primary Bottom Primary Left Primary Right Primary
number Vortex (TPV) Vortex (BPV) Vortex (LPV) Vortex (RPV)

10 0.509, 0.849 0.497, 0.157 0.157, 0.497 0.849, 0.509
100 0.560, 0.842 0.446, 0.160 0.160, 0.446 0.842, 0.560
127 0.567, 0.840 0.440, 0.167 0.167, 0.440 0.840, 0.567
200 0.613, 0.840 0.387, 0.167 0.167, 0.387 0.840, 0.613

Figures 3 and 4 recognize that the absolute value of velocity is maximum near
the walls of a square cavity due to the movement of the walls of the square cavity.
The direction and magnitude of the velocity profiles changes as we move towards the
center of the cavity due to fluid circulation. The absolute value of the velocity profiles
increases in the vicinity of the moving wall of the square cavity as the Reynolds
number increases from Re = 10 to 200.
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Figure 5 shows that the vorticity contours in the vicinity of the top and bottom
walls are negative in sign, while in the vicinity of the left and right walls, the vor-
ticity contours are positive in sign. A negative sign represents the clockwise rotation
while a positive sign represents an anti-clockwise rotation. The vorticity contours
are symmetric about the horizontal as well as the vertical line through the geometric
center of the square cavity for Reynolds number Re = 10, while these are the mirror
images for Re= 100 to 200. The absolute value of vorticity along the diagonal as well
as anti-diagonal of the square cavity increases with an increase of Reynolds number
Re = 10 to 200. The vorticity contours start shifting towards anti-diagonal as well as
the geometric center of the square cavity with an increase of the Reynolds number.

Figure 6 illustrates the isotherms contours are symmetric about the horizontal
line through the geometric center of the square cavity and are wavy. The isotherms
contours increase from the geometric center of the square cavity towards the top and
bottom wall at a particular Reynolds number. The temperature profiles increase with
an increase of the Reynolds number from Re = 10 to 100, while it decreases for
Re = 100 to 200. The temperature profiles are symmetric about the horizontal line
through the geometric center of the cavity.
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Fig. 5. Vorticity contours for four-sided lid-driven square cavity at different Reynolds numbers:
Re = 10, Re = 100, Re = 127, and Re = 200
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Fig. 6. Isotherms contours for four-sided lid-driven square cavity at different Reynolds numbers:
Re = 10, Re = 100, Re = 127, and Re = 200
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Figure 7 illustrates the temperature and average Nusselt number along the vertical
line through the geometric center of the square cavity for different Reynolds numbers
and at a distinct time level. The temperature of the fluid is maximum in the vicinity of
the top and bottom wall, and it decreases towards the geometric center of the square
cavity at a particular Reynolds number. The temperature profiles are symmetric about
the horizontal line through the geometric center of the cavity. The temperature starts
increasing with an increase of Reynolds numbers Re = 10 to 127, while it starts de-
creasing from Re = 127 to 200 at time t = 3. Temperature increases with an increase
of time from t = 1 to 3. The average Nusselt number along the vertical line through
the geometric center of the square cavity decreases and attains the steady-state solu-
tion at Reynolds number Re = 10, while it decreases and slightly increases to achieve
the steady-state solution for Re = 100 to 200. The maximum absolute value of the
average Nusselt number increases with an increase of Reynolds numbers Re = 10
to 200.
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Fig. 7. Temperature and average Nusselt number along vertical line through the geometric center of the
square cavity at different Reynolds numbers Re = 10, 100, 127, 200 and different time level t = 1, 3

The concentration contours of the four-sided lid-driven square cavity have been
depicted in Figure 8 with Reynolds number Re = 100 and different Schmidt numbers
(a) Sc = 10, (b) Sc = 50 (c) Sc = 100, (d) Sc = 150. Since the concentration is zero
on the left and right wall of the square cavity, the only contribution to concentration
is due to the mass flux at the top and bottom wall. The concentration from the left and
right wall of the cavity increases towards the geometric center of the square cavity at
a particular Schmidt number. The concentration contours look like symmetric about
the horizontal line through the geometric center of the square cavity at Sc = 10,
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Fig. 8. Concentration contours for four-sided lid-driven square cavity with Re = 100 and different
Schmidt numbers: Sc = 10, Sc = 50, Sc = 100, and Sc = 150

while the contours are the mirror image of each other about the horizontal and ver-
tical line through the geometric center of the square cavity for Schmidt numbers
Sc = 50 to 150. The concentration contours start shifting anti-diagonally and
towards the geometric center of the square cavity as the Schmidt number increases
from Re = 10 to 150. The absolute value of concentration decreases with an increase
of Schmidt number Sc = 10 to 150.

Figure 9 illustrates the concentration along the vertical line through the geomet-
ric center of the square cavity for different Reynolds numbers, Schmidt number, and
at distinct time levels. The effect of the Reynolds number shown in the first three
subfigures by ranging the Reynolds number Re = 10 to 200 and Schmidt number
10. The last subfigure illustrates the effect of Schmidt number Sc = 10 to 150 and
Reynolds number Re = 100. The concentration profiles behave alike as the temper-
ature profile for Reynolds numbers Re = 10 to 200 and Schmidt number Sc = 10 at
time t = 1 and 3.

The concentration profile is smooth for Sc = 10, while it starts oscillating with
an increase of Schmidt number Sc = 10 to 150. The absolute value of concentration
along the vertical line through mid of the square cavity reduces with an increase of
Schmidt number Sc = 10 to 150 and Reynolds number Re = 100.

The effect of Reynolds numbers and Schmidt numbers on the average Sherwood
number along the vertical line through the geometric center of the square cavity
has been described in Figure 10. The average Sherwood number decreases with an
increase of Reynolds number Re = 10 to 200 and Sc = 10. At Reynolds number
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Re = 100, the average Sherwood number is a positive real number for Sc = 10, while
it becomes negative for Sc = 50 to 150.
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Fig. 10. Average Sherwood number for a four-sided lid-driven square cavity with different Reynolds
numbers Re = 100−200 and Schmidt numbers Sc = 10−150

The average Sherwood number increases and attains a steady-state solution for
Sc = 10 at t = 3, while it first decreases and then increases to attain a steady-state
solution for Sc = 50 to 150. The average Sherwood number becomes approximately
zero after achieving a steady-state solution for Sc = 50 to 150.
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6. Code validation

We have validated our present computer code for the high-Re solution for in-
compressible flow using a multi-grid method by Ghia et al. [2] (Figs. 11 and 12).
Also, to determine the accuracy of our present numerical scheme, we have studied the
four-sided, lid-driven square cavity problem investigated by Perumal and Dass [9],
and Azwadi et al. [10].

Fig. 11. u-velocity profiles along the vertical
line through center-line of the square

cavity at Re = 100

Fig. 12. v-velocity profiles along the
horizontal line through center-line
of the square cavity at Re = 100

We have compared the locations of vortices which occur in the vicinity of four
walls in Table 2. It is found that our results and those of [9,10], are in good agreement.

Table 2. Comparison of centers of vortices at TPV, BPV, LPV and RPV of Perumal and Dass [9],
Azwadi et al. [10] with present work at different Reynolds numbers

Reynolds
Reference TPV BPV LPV RPVnumber

Perumal and Dass [9] 0.510, 0.850 0.490, 0.149 0.150, 0.490 0.849, 0.510
Re = 10 Azwadi et al. [10] 0.509, 0.851 0.497, 0.155 0.155, 0.497 0.851, 0.509

Present work 0.509, 0.849 0.497, 0.157 0.155, 0.497 0.849, 0.509
Perumal and Dass [9] 0.550, 0.840 0.450, 0.160 0.160, 0.450 0.840, 0.550

Re = 100 Azwadi et al. [10] 0.559, 0.845 0.442, 0.161 0.161, 0.442 0.845, 0.559
Present work 0.560, 0.842 0.446, 0.160 0.160, 0.446 0.842, 0.560

Perumal and Dass [9] 0.548, 0.830 0.449, 0.168 0.170, 0.450 0.830, 0.550
Re = 127 Azwadi et al. [10] 0.559, 0.839 0.442, 0.168 0.168, 0.442 0.839, 0.559

Present work 0.567, 0.840 0.440, 0.167 0.167, 0.440 0.840, 0.567

7. Conclusions

With the aid of numerical computations, we illustrate the variation of the
u-velocity, temperature (T ), concentration (C), average Nusselt number (Nu),
and the average Sherwood number (Sh) along the vertical line and v-velocity along
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the horizontal line through the geometric center of the square cavity respectively.
The effect of the Reynolds number and the Schmidt number have been demonstrated
in the numerical computations. We can draw the following conclusions based on our
numerical simulation:

• The four streamline vortices are generated namely, Left Primary Vortex (LPV),
Right Primary Vortex (RPV), Bottom Primary Vortex (BPV) and Top Primary
Vortex (TPV). The top and bottom primary vortices are moving in a clock-
wise direction, while the left and right primary vortices are moving in a anti-
clockwise direction. The center of these streamline vortices start shifting
towards anti-diagonal as the Reynolds number increases from Re = 10 to 127.
• The direction and magnitude of the velocity profiles changes as we move

towards the center of the cavity due to fluid circulation. The absolute value of
the velocity profiles increases in the vicinity of the moving wall of the square
cavity as the Reynolds number increased from Re = 10 to 200.
• The absolute value of vorticity along the diagonal as well as anti-diagonal of

the square cavity increases with an increase of Reynolds number Re = 10 to
200.
• The isotherm contours are symmetric about the horizontal line through

the geometric center of the square cavity and are wavy. The temperature
profiles increase with an increase of Reynolds number from Re = 10 to 100,
while it decreases for Re = 100 to 200.
• The concentration contours appear to be symmetric about the horizontal line

through the geometric center of the square cavity at Sc= 10, while the contours
are the mirror image of each other about the horizontal and vertical line through
the geometric center of the square cavity for Schmidt numbers Sc = 50 to 150.
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[14] Wu, H., Romanò, F., & Kuhlmann, H.C. (2017). Attractors for the motion of finite-size particles
in a two-sided lid-driven cavity. Proceedings in Applied Mathematics and Mechanics, 17(1),
669–670, DOI: 10.1002/pamm.201710303.

[15] Romano, F., Kunchi, K.P., & Kuhlmann, H.C. (2019). Finite-size Lagrangian coherent structures
in a two-sided lid-driven cavity. Phys. Rev. Fluids, 4(2), 024302, DOI: 10.1103/PhysRevFlu-
ids.4.024302.
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