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Abstract. In this paper the problem of vibration control of a multi-member column subjected 

to the specific load is investigated. The vibration control is realized with the use of the  

piezoceramic element in the form of a rod that is connected to the host structure by means 

of the pins strengthened by rotational springs. The Hamilton’s principle is used during  

formulation of the boundary problem. The results of the numerical simulations are focused 

on the correction of the characteristic curves shape at a different radius of the loading head. 
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1. Introduction 

Mechanical structures are subjected to different static or dynamic excitations. 

The studies on the smart material lead to the point in which the integration of such 

materials with host structures took place to achieve the control over their behavior. 

One of those materials is a piezoceramic one. As a result of an applied voltage,  

the piezoceramic elements may generate additional forces which may lead to the 

bending [1] or prestressing [2]. This type of integration is possible because the  

piezoelements are being produced in a variety of shapes and sizes (rods, tubes, 

beams, discs, plates) and their mechanical properties.  

In the studies [3], authors have presented the results on shape control of piezo-

electric intelligent structures in the form of a structural plates. This paper included  

a mathematical model of a piezoelectric intelligent structure while the shape control 

was realized with the use of the genetic algorithm. Similar studies were realized in 

[4, 5]. Moreover, piezoelements can also be used when active dynamic instability 

control is a goal [6, 7]. 

In the paper written by Faria [8] one can find how to increase a buckling force 

of single beam with piezopart was presented. Author has used the system with both 



K. Sokół 86 

fixed ends, while the piezo has generated axial force. The studies performed by 

Sokół and Uzny [9] were focused on an influence of the residual longitudinal 

forces on the stability of the column subjected to Euler’s load.  

Sokół with cooperation with Przybylski [10] have eccentrically installed a piezo- 

ceramic rod in order to control the defection of the beam system. They have shown 

that application of a voltage to the piezoelement may help to regain the rectilinear 

form of static equilibrium. 

The external load used in this study was defined by Tomski [11]. The loading 

unit generated the new shape of the characteristic curve known as the divergence - 

pseudoflutter one. The loading unit was composed of loading and load receiving 

heads with different parameters. That type of external load was called the specific 

one. 

The main goal of this study is to perform theoretical and numerical studies on  

a cantilever multi-member column integrated with a piezorod. The studies are  

focused on an influence of the force generated by the piezoelement on the vibration 

frequency, shape of the characteristic curve as well as bifurcation load magnitude 

at a different radius of the loading head.  

2. Investigated system  

The investigated slender system is presented in Figure 1. The used loading 

heads have circular outlines. 
 

 
Fig 1. Bent axes of the investigated column 
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The system consists of two members - external and internal. The external one is 

composed of  rod 1 which is a continuous element. The internal member is made of  

rods 2, 3, 4. It is proposed that rod 3 will be made of piezoceramic material due to 

problematic production of long piezorods. The connection of the piezoelement with 

the internal elements 2 and 4 is realized with pins and rotational springs marked as 

CL, CH. Such a connection allows one to create a more general mathematical model 

on the basis of which studies on an influence of different parameters (associated 

with length and connection stiffness piezo - host structure) on vibration and stabil- 

ity can be done. The length of rods is marked with l1 
, l2 

, l3 
, l4 (where l = l1 = l2 + l3 + 

+ l4). The m stands for the mass of the heads while R is a radius of the loading head 

and r is a radius of the load receiving head. The l0 describes the distance between 

the top end of the slender structure and the contact point of heads. 

3. Problem formulation  

In the first step of boundary problem formulation, the kinetic and potential  

energies were defined in the form:  
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where: 
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Ei - Young’s modulus [GPa], Ji - moment of inertia [m
4
], Ai - cross-sectional area [m

2
], 

i - material density [kg/m
3
], CH,L - rotational spring stiffness [Nm], P - external 

load [N], Wi - transversal displacement [m], Ui - longitudinal displacement [m],  

R - radius of the loading head [m], r - radius of the load receiving head [m], m - mass 

of heads [kg], l0 - transom length [m]. 

The energies are substituted into the Hamilton’s principle: 
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and after variation and integration operations, one may obtain equations of motion 

(i = 1 …4):  
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and a set of natural boundary conditions which satisfy the continuity of displace-

ments, longitudinal forces, deflection angles and bending moments. The natural 

boundary conditions are supplemented by the geometrical ones. The full set of 

boundary conditions is given below: 

 
1 2

1 2

1 1 2 2
1 1 2 20 0

1 20 0

( , ) ( , )
( , ) 0, 0, ( , ) 0, 0

x x

x x

W x t W x t
W x t W x t

x x 
 

 
   

 
 (7-10) 

 3 32 2

43
2 2 3 3 3 3 4 4 00
( , ) ( , ) , ( , ) ( , )

x lx l

xx
W x t W x t W x t W x t




   (11-12) 

 
1 1 4 4

1 1 4 4 1 1 4 4
1 1 4 4

1 4

( , ) ( , )
( , ) ( , ) ,

x l x l

x l x l W x t W x t
W x t W x t

x x

 
   

 
 

 (13-14) 

 

2 2

3 3

2
3 3 3 3 2 2

3 3 2
3 3 20 0

( , ) ( , ) ( , )
0

x l

L

x x

W x t W x t W x t
E J C

x x x



 

       
   
 

 (15) 



The control of stability of a column subjected to specific load 89

 

2 2 2 2

3

2
3 32 2 2 2

2 2 2
2 3 20

( , )( , ) ( , )
0

x l x l

L

x

W x tW x t W x t
E J C

x x x

 



     
   
 

 (16) 

 

3 3

4 4

2
3 34 4 4 4

4 4 2
4 4 30 0

( , )( , ) ( , )
0

x l

H

x x

W x tW x t W x t
E J C

x x x



 

      
   
 

 (17) 

 

3 3 3 3

4

2
3 3 3 34 4

3 3 2
3 4 30

( , ) ( , )( , )
0

x l x l

H

x

W x t W x tW x t
E J C

x x x

 



     
   
 

 (18) 

 

2 2 2 2

3 3

3
2 2 2 2

2 2 23
2 2

3
3 3 3 3

3 3 33
3 30 0

( , ) ( , )

( , ) ( , )
0

x l x l

x x

W x t W x t
E J S

x x

W x t W x t
E J S

x x

 

 

 
 

 

 
  

 

   (19) 

 

3 3 3 3

4 4

3
3 3 3 3

3 3 33
3 3

3
4 4 4 4

4 4 43
4 40 0

( , ) ( , )

( , ) ( , )
0

x l x l

x x

W x t W x t
E J S

x x

W x t W x t
E J S

x x

 

 

 
 

 

 
  

 

 (20) 

 

 

1 1 4 4

1 1

1 1

2 2
1 1 4 4

1 1 4 42 2
1 4

0 1 1
0 1 1

1

( , ) ( , )

( , )
( , ) 0

x l x l

x l
x l

W x t W x t
E J E J

x x

r l W x t
P R l W x t

R r x

 




 
 

 

      
   

 (21) 

 1 2 2 3 4, ,S S P S S S     (22-24) 

 

 

1 1 4 4

1 1 1 1

1 1

3 3
1 1 4 4

1 1 4 43 3
1 4

2
1 1 1 1

0 1 1 2
1

( , ) ( , )

( , ) ( , )1
( , ) 0

x l x l

x l x l

x l

W x t W x t
E J E J

x x

W x t W x t
P R l W x t m

R r x t

 

 


 
 

 

       
    

 (25) 



K. Sokół 90 

In order to designate the magnitude of the force generated by the piezoceramic 

element after the appliance of the voltage, one defines the potential energy in the 

form: 
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The stress-strain relationships are given with eqs. (27)-(29). Electrical displace-

ment induced by electrical field Ez is described by eq. (30). The other markings  

are as follows: εxi - axial strain, Ei - Young’s modulus, e31 - piezoelectric constant,  

ψ33 - piezoelectric conductivity. 
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The electric field and piezoelectric force one defines as /zE V h  and 31F be V   

respectively. 

Finally, after a series of mathematical operations (assuming that the voltage is 

constant), one obtains the formula which presents the relationship between parame-

ters of the system and the piezoelectric force F. Such a force is called the residual 

one and is marked as FRez 
. 
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An induction of the residual force (by appliance of the voltage to the piezo- 

ceramic rod) lead to the prestressing of the system. One can find cases in which: 

the members are tensioned/compressed alternately (at low magnitude of external 

load) or the residual force balances the components of the forces in rods which  

appear during action of the external load. It should be also mentioned that the  

absolute value of FRez in rods is the same. Finally, the prestressing force must be 

introduced into (eq. (6)). The final solution of the boundary problem has been  

performed with the small parameter method [12]. 

4. Results  

In this section the results of numerical simulations on an influence of the voltage 

applied to the piezorod on the shape of the bifurcation load curves and characteristic 

ones are presented. The results are plotted in the non-dimensional form, according 

to the following relations: 
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The results of the numerical simulations are plotted at a different magnitude of 

ζA = 0.2, 0.8, 1.6. The parameter represents the change in the radius of the loading 

head. The obtained curves are plotted on planes: external load magnitude p - pre- 

stressing force f and external load magnitude p  vibration frequency . The other 

parameters of the system are given in the description below each figure. The - f stands 

for tensile force in the external member.  

 

  

Fig. 2. Influence of the residual force f 

on bifurcation load p at different 

radius of the loading head 

(ζB = 0.2, ζC = 0.2, r21 = r32 = r43 = 1, 

d2 = 0.25, d3 = 0.5, cH = cL = 1) 

Fig. 3. Influence of the residual force f 

on bifurcation load p at different 

radius of the loading head 

 (ζB = 0.2, ζC = 0.2, r21 = r32 = r43 = 1, 

d2 = 0.25, d3 = 0.5, cH = 0.1, cL = 1) 

When both rotational springs have equal stiffness (cH = cL = 1, see Fig. 2) the great-

est increase in bifurcation load capacity has been observed at ζA = 0.2. An increase 

in ζA results in a decrease in the bifurcation load as well as an influence of the  

residual force becoming smaller. The reduction of the stiffness of one of springs 

down to cH = 0.1 (Fig. 3) shows the analogues situation to the one described previ-

ously. It is worth mentioning that at the same magnitude of f more rapid changes  

in the bifurcation load (increase/decrease) can be observed in relation to the cH = 1 

case. 
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Fig. 4. Influence of the residual force f 

on the shape of the characteristic 

curves (ζA = 0.2, ζB = 0.2, ζC = 0.2, 

ζD = 0.2, r21 = r32 = r43 = 1, 

d2 = 0.25, d3 = 0.5, cH = 0.1, cL = 1) 

Fig. 5. Influence of the residual force f 

on the shape of the characteristic 

curves (ζA = 0.8, ζB = 0.2, ζC = 0.2, 

ζD = 0.2, r21 = r32 = r43 = 1, 

d2 = 0.25, d3 = 0.5, cH = 0.1, cL = 1) 

On the basis of the data obtained during simultaneously performed studies one 

can present the characteristic curves on the external load - vibration frequency plane. 

The presented curves correspond to the case when ζB = 0.2, ζC = 0.2, ζD = 0.2,  

d2 = 0.25, d3 = 0.5, cH = 0.1, cL = 1 and equal bending rigidity ratios. The ζA defines 

as 0.2 or 0.8. The curves are plotted at a different level of the prestressing force. 

An appliance of a voltage to the piezoelement and generation of the tensile 

force in the external member (–f) results in reduction both in the vibration fre-

quency as well as in the bifurcation load. The opposite results (increase in vibration 

frequency and bifurcation load) can be observed when the piezoforce causing the 

compression of the external member takes place (+f). Such a relation was observed 

at every considered magnitude of ζA . The change of the parameters of the heads 

such as ζB or ζC affects only the shape of the curves but not an influence of the 

prestressing.  

An influence of the prestressing realized with the use of the piezoceramic ele-

ments on vibration modes is presented in Table 1.  

The figures in Table 1 are presented at a different magnitude of the prestressing 

force as well as external load. Bearing in mind that the investigated system has  

a divergence-pseudoflutter type of the characteristic curve, one presents two vibra-

tion modes one for positive and one for negative slope of the curve.  
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Table 1. Influence of the prestressing on vibration modes (ζA = 0.2, ζB = 0.2, ζC = 0.2, 

ζD = 0.2, r32 = r43 = 1, d2 = 0.25, d3 = 0.5, cL = 1, cH = 0.1) 

f = 2 

p = 2 p = 9 

  

f = 0 

p = 2 p = 7.8 

  

f = –2 

p = 2 p = 5.5 

  

 
The continuous curve corresponds to the internal member while the continuous one 

stands for the external one. The generation of the presstressing equal to f = 2 results 

in shift of the bent axes of rods closer to each other when at f = 0 at greater p.  

At f = –2 the prestressing causes a greater deflection of axes of rods (at smaller p) 

in relation to the reference case (f = 0). 

5. Conclusions 

The paper presents the results of theoretical as well as numerical studies on  

a possibility of vibration and stability control by means of the piezoceramic ele-

ments at different loading heads used to generate the specific load. The piezoele-

ment is connected to the main structure with the use of pins and rotational springs.  

On the basis of the results of numerical simulations the general conclusions are: 

 the compressive as well as tensile forces induced by the piezoelement allows 

one to observe vibration and bifurcation load control, 

 an area of increase in bifurcation load depends not only on applied voltage but 

also on other parameters of the system for example spring stiffness, 

 prestressing generated with piezoelement affects the shape and location of  

characteristic curves as well as the maximum vibration frequency magnitude. 
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As shown in this study, the piezorods can control the instability and vibrations 

of the slender systems. In future studies, an influence of the force generated by  

the piezoelement on the behavior of the main structure will be investigated taking 

into account the change in the load receiving head radius and transom length.  
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