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Abstract. This article proposes an analysis of the results of the application of hyperexpo-

nential approximations with parameters of the paradoxical and complex type for calculating 

the steady-state probabilities of the G/G/n/m queueing systems with the number of channels 

n = 1, 2 and 3. The steady-state probabilities are solutions of a system of linear algebraic 

equations obtained by the method of fictitious phases. Approximation of arbitrary distribu-

tions is carried out using the method of moments. We verified the obtained numerical  

results using potential method and simulation models, constructed by means of GPSS 

World.  
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1. Introduction  

For the study of the non-Markovian process in queueing systems, phase-type 

distributions are used with exponential distributions of delays in the phases [1-3]. 

In the case of fixing the number of the phase, the states of the system has a Markov 

property that makes it possible to represent the transitions between them in the 

form of a discrete Markov process with continuous time. The order of approxima-

tion is the number of retained initial moments of the original distribution.  

In many cases, the approximation of an arbitrary distribution by a phase-type 

distribution using the moments method leads to the fact that the parameters of the 

approximating distribution are paradoxical (i.e., negative or with probabilities that 

exceed the boundaries of the interval [0, 1]) or are complex-valued. 

Recently, interest in hyperexponential distribution has increased since its use 

showed its high performance in solving problems of summation of recurrent flows 
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[4], in computing characteristics of queuing systems with impatient customers [5] 

and Jackson’s networks of queueing [6], and also in analyzing stock management 

systems [7]. 

Article [3] shows that the use of hyperexponential approximation ( )kH  and, in 

some cases, approximation with the help of the generalized Erlang law ( )kE  makes 

it possible to determine the steady-state probabilities of non-Markovian single-

channel queuing systems with high accuracy. 

The initial moments of an kH -distribution are calculated by simpler formulas 

than the moments of an kE -distribution and allow for the equalization of 2 1k  

moments in approximating an arbitrary distribution (for an kE -distribution, only k  

moments can be equalized); therefore, the approximation using an kH -distribution 

is much more efficient. To find parameters of the kH -approximation of a certain 

distribution it is sufficient to solve the system of equations of the moments method. 

Roots of this system are complex-valued or paradoxical for the values 1V  of the 

variation coefficient, but in most cases, as a result of summation of probabilities  

of microstates, their complex-valued and paradoxical parts are annihilated. 

The purpose of the paper is to analyze the peculiarities of applying hyper-

exponential distributions with both real and paradoxical and complex-valued pa-

rameters for the approximate calculation of steady-state probabilities of G/G/n/m 

queues for n = 1, 2 and 3 by means of their approximation by the Hk/Hk/n/m queue-

ing systems. In particular, we will focus on clarifying the following issues: the  

influence of increasing the number of channels G/G/n/m queue on the accuracy of 

calculating the steady-state distribution of the number of customers; ascertainment 

of conditions for variation coefficients of distributions, for which satisfactory accu-

racy of the calculation of steady-state probabilities is achieved (better compared to 

the results of simulation modeling); the study of the properties of the ”function” of 

the kH -distribution in the case of paradoxical or complex-valued the distribution 

parameters and the effect of its deviation from the true distribution function on the 

accuracy of the results; finding ways to evaluate the accuracy of the approach 

steady-state distribution of the Hk/Hk/n/m queue to the true distribution without  

the need to use simulation models.  

2. Features of approximation by means of Hk-distributions  

The hyperexponential distribution of order k is a phase-type distribution and 

provides for choosing one of k alternative phases by a random process. With prob-

ability yi 
, the process is at the i-th phase and remains in it during an exponentially 

distributed time with a parameter i 
. 

The system of equations of the moments method for approximating the distribu- 

tion of some random variable X  using a random variable kY  distributed by law of  

kH  is of the form 
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where ( ) i
im E X  is the initial moment of order i of the random variable X.  

The dependence of the nature of the roots of the system (1) on the values of the 

variation coefficient V  for the original gamma distributions and Weibull distribu-

tions is described in [3]. 

Using equation (1), we find out how the kH -distribution parameters change,  

if instead of the distribution of a random variable X it is necessary to approximate 

the distribution of the random variable ,ɶX CX  where .C const  Since 
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0 2 1.  i k  Consequently, if the parameters jy  and j  of kH -approximation of 

the distribution of the random variable X are known, then the parameters ɶ jy  and ɶj  

of kH -approximation of the distribution of the random variable ɶX CX  can be 

obtained by formulas 

 , / , 1 .   ɶɶ
j j j jy y C j k   (2) 

The transformation ɶX CX  does not change the form of the law of gamma  

distributions and Weibull distributions, only the scale parameter changes: .ɶ C   

Since, in addition, the variation coefficient V of any distribution is invariant with 

respect to the ɶX CX  transformation, in order to determine the parameters of  

kH -approximation for the Weibull distribution and for the gamma distribution with 

a given coefficient of variation and with the mean ( ) ,ɶE X C  as well as for the  

degenerate distribution (case of V = 0), it is sufficient to solve the system (1) for 

example, for the case ( ) 1,E X  and then use the relation (2). 

In the case of complex-valued or paradoxical roots 
jy  and j  of the system (1), 

let us name the function 

1
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 the distribution pseudo- 

function by law of .kH  Let us show that a function ( )
kHF t  is a real-valued function 

if 
jy  and (1 ) j j k  are roots of the system (1). 

In fact, if some of the roots of the system (1) are complex-valued, then they can 

only be complex conjugate, and all possible cases of alternation of signs before  

the imaginary unit can be reduced to such two: 

 
1 1 2 2

1 1 2 2

1) , ; , ;

2) , ; , .
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y a ib i y a ib i
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     
 (3) 

In each of these cases, the imaginary parts in the expression for ( )
kHF t  are reduced, 

so the result is the real-valued function: 
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The absolute deviation of the function of distribution by law G from a function 

( ),
kHF t  whose parameters are roots of the system (1), we will evaluate with the 

help of the integral 

0

( ) | ( ) ( ) | ,



   kk H GF F t F t dt  where ( )GF t  is the probability 

distribution function by law .G  

Table 1. Values of the absolute deviation Δk(F) for different distributions  

Distribution name Δ2(F) Δ3(F) Δ4(F) Δ5(F) Δ6(F) 

D 0.3660 0.2615 0.2098 0.1801 0.1560 

U [0, 2] 0.1139 0.0632 0.0411 0.0295 0.0224 

Γ(0.001) 0.3629 0.2605 0.2092 0.1773 0.1549 

Γ(0.1) 0.2864 0.1811 0.1256 0.0894 0.0642 

Γ(0.2) 0.2121 0.1042 0.0519 0.0250 0.0114 

Γ(0.3) 0.1436 0.0479 0.0145 0.0038 0.0008 

Γ(0.4) 0.0867 0.0167 0.0023 0.0002 2.4·10–6 

Γ(0.49) 0.0481 0.0041 5.1·10–5 3.0·10–6 3.8·10–7 

Γ(0.6) 0.0167 0.0003 3.6·10–5 6.6·10–6 1.7·10–6 

Γ(0.7) 0.0007 7.2·10–5 1.4·10–5 3.7·10–6 1.2·10–6 

Γ(0.8) 0.0058 0.0009 0.0002 8.0·10–5 3.3·10–5 

Γ(0.9) 0.0055 0.0011 0.0003 0.0001 6.2·10–5 

Γ(1.1) 0.0090 0.0025 0.0009 0.0004 0.0002 

Γ(1.5) 0.0614 0.0219 0.0101 0.0055 0.0033 

Γ(2) 0.1317 0.0529 0.0270 0.0158 0.0102 

Γ(3) 0.2416 0.1055 0.0574 0.0356 0.0240 

Γ(4) 0.3146 0.1412 0.0787 0.0497 0.0340 

Γ(5) 0.3642 0.1655 0.0932 0.0594 0.0409 

Γ(10) 0.4733 0.2182 0.1244 0.0801 0.0557 

W(0.1) 0.2918 0.1863 0.1314 0.0968 0.0729 

W(0.2) 0.2200 0.1151 0.0652 0.0383 0.0230 

W(0.3) 0.1540 0.0621 0.0271 0.0123 0.0058 

W(0.4) 0.0985 0.0291 0.0096 0.0033 0.0012 

W(0.5) 0.0555 0.0117 0.0028 0.0007 0.0002 

W(0.6) 0.0253 0.0042 0.0005 0.0002 5.0·10–5 

W(0.7) 0.0071 0.0026 0.0006 ∞ 6.1·10–5 

W(0.8) 0.0043 ∞ 0.0004 0.0001 ∞ 

W(0.9) 0.0049 0.0005 ∞ 0.0001 4.8·10–5 

W(0.95) 0.0031 0.0005 0.0001 ∞ 3.5·10–5 

W(1.1) 0.0096 0.0027 0.0010 0.0004 0.0002 

W(2) 0.1863 0.1041 0.0672 0.0473 0.0352 

W(3) 0.3973 0.2790 0.2170 0.1786 0.1524 
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Table 1 gives deviation values of ( )k F  for 2, ,6, …k  calculated by results of 

approximation of such distributions with means ( ) 1:E X   degenerate distribution 

with a constant value of 1 (coefficient of variation 0V ), labeled as D;  

uniform distribution on the interval [0,2] ( 0.577),V  labeled as [0,2];U  gamma 

distributions and Weibull distributions with different coefficients of variation V, 

labeled as ( ) V  and ( )W V  respectively. With increasing order of kH -distribution, 

the value of the deviation ( )k F  decreases, and with the increase of the coefficient 

of variation for 1V  the deviation increases much faster for the distribution of 

Weibull compared with the gamma distribution. The bold text allocates the mini-

mum values of ( )k F  for each k obtained separately for gamma distributions and 

Weibull distributions. For distributions (0.7), (0.8), (0.9)W W W  and (0.95)W  for 

some values of k the deviation ( ) .  k F  In each of these cases, one of roots of 

the system (1) is real, but negative: 1 0.  Therefore, for the corresponding distri- 

bution pseudo-function, the limit relation lim ( )


 
kH

t
F t  is valid. 

3. Numerical results 

Let us study the features of kH -approximation on examples of G/G/n/m queue- 

ing systems with the number of channels 1, 2n  and 3 and with the limit 15m  

on the queue length. We approximate the G/G/n/m, M/G/n/m and G/М/n/m systems 

by means of the Hk/Hk/n/m, M/Hk/n/m and Hk/М/n/m systems respectively, using the 

order of approximation k  from 2 to 6. The mean service time in all cases is equal 

to 1, the load factor of the system 0.8.  The following uniform distributions 

have been used: [0, 2]U  for service times, and [0.25, 2.25], [0.125, 1.125]U U  and 

[1 /12, 0.75]U  for the times elapsed between two consecutive arrivals in cases 

1, 2 n n  and 3n  respectively. 

Table 2. Results of the calculation of steady-state characteristics of the M/G/1/15 

systems with different G-distributions 

G-distribution 

name 

Characteristic 

name 

Method of calculation and values of characteristics 

Approximation using Hk Potential 

method k = 2 k = 3 k = 4 k = 5 k = 6 

1 2 3 4 5 6 7 8 

D 

N 2.3831 2.3828 2.3828 2.3828 2.3828 2.3828 

Δk(Pot) 6.80·10–3 1.27·10–4 1.59·10–6 1.25·10–8 1.63·10–10 – 

Δ(k,k–1) – 6.80·10–3 1.28·10–4 1.60·10–6 1.26·10–8 – 

Δ(6,k) 6.80·10–3 1.27·10–4 1.59·10–6 1.26·10–8 – – 

Γ(0.1) 

N 2.3981 2.3977 2.3977 2.3977 2.3977 2.3977 

Δk(Pot) 6.53·10–3 1.19·10–4 1.45·10–6 1.10·10–8 8.56·10–11 – 

Δ(k,k–1)   0.0065 1.20·10–4 1.45·10–6 1.11·10–8 – 

Δ(6,k) 6.53·10–3 1.19·10–4 1.45·10–6 1.11·10–8 – – 
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cont. table 2 

1 2 3 4 5 6 7 8 

W(0.1) 

N 2.3981 2.3977 2.3977 2.3977 2.3977 2.3977 

Δk(Pot) 6.55·10–3 1.20·10–4 1.51·10–6 1.82·10–8 7.81·10–9 – 

Δ(k,k–1)   6.55·10–3 1.21·10–4 1.51·10–6 1.20·10–8 – 

Δ(6,k) 6.55·10–3 1.20·10–4 1.51·10–6 1.20·10–8 – – 

Γ(0.49) 

N 2.7288 2.7286 2.7286 2.7286 2.7286 2.7286 

Δk(Pot) 2.12·10–3 1.16·10–5 6.99·10–9 1.56·10–8 2.81·10–7 – 

Δ(k,k–1)   2.12·10–3 1.16·10–5 1.97·10–8 2.65·10–7 – 

Δ(6,k) 2.12·10–3 1.17·10–5 2.81·10–7 2.65·10–7 – – 

W(0.5) 

N 2.7436 2.7433 2.7433 2.7433 2.7433 2.7433 

Δk(Pot) 2.62·10–3 4.53·10–5 1.04·10–6 4.65·10–7 4.62·10–7 – 

Δ(k,k–1)   2.63·10–3 4.53·10–5 7.01·10–7 9.05·10–9 – 

Δ(6,k) 2.62·10–3 4.50·10–5 6.93·10–7 9.05·10–9 – – 

U [0, 2] 

N 2.8603 2.8596 2.8596 2.8596 2.8596 2.8596 

Δk(Pot) 5.20·10–3 2.04·10–4 6.26·10–6 1.48·10–7 2.45·10–9 – 

Δ(k,k–1)   5.23·10–3 2.06·10–4 6.38·10–6 1.50·10–7 – 

Δ(6,k) 5.20·10–3 2.04·10–4 6.25·10–6 1.50·10–7 – – 

Γ(0.7) 

N 3.0549 3.0549 3.0549 3.0549 3.0549 3.0549 

Δk(Pot) 4.37·10–5 4.26·10–7 6.48·10–9 1.15·10–10 5.29·10–11 – 

Δ(k,k–1) – 4.36·10–5 4.23·10–7 6.41·10–9 1.46·10–10 – 

Δ(6,k) 4.37·10–5 4.26·10–7 6.49·10–9 1.46·10–10 – – 

W(0.7) 

N 3.0575 3.0574 3.0574 3.0574 3.0574 3.0574 

Δk(Pot) 4.70·10–4 2.78·10–5 4.50·10–7 5.75·10–8 4.63·10–8 – 

Δ(k,k–1) – 4.76·10–4 2.76·10–5 4.34·10–7 1.88·10–8 – 

Δ(6,k) 4.70·10–4 2.78·10–5 4.23·10–7 1.88·10–8 – – 

Γ(0.9) 

N 3.4191 3.4192 3.4192 3.4192 3.4192 3.4192 

Δk(Pot) 4.05·10–4 1.15·10–5 4.24·10–7 1.66·10–8 6.64·10–10 – 

Δ(k,k–1) – 4.03·10–4 1.13·10–5 4.11·10–7 1.60·10–8 – 

Δ(6,k) 4.05·10–4 1.15·10–5 4.24·10–7 1.60·10–8 – – 

W(0.9) 

N 3.4214 3.4215 – 3.4215 3.4215 3.4215 

Δk(Pot) 4.16·10–4 3.24·10–6 – 1.92·10–7 1.89·10–7 – 

Δ(k,k–1) – 4.15·10–4 – 3.12·10–6 1.89·10–8 – 

Δ(6,k) 4.15·10–4 3.13·10–6 – 1.89·10–8 – – 

Γ(1.1) 

N 3.7964 3.7963 3.7963 3.7963 3.7963 3.7963 

Δk(Pot) 7.97·10–4 4.02·10–5 2.44·10–6 1.57·10–7 1.08·10–8 – 

Δ(k,k–1) – 7.82·10–4 3.86·10–5 2.31·10–6 1.50·10–7 – 

Δ(6,k) 7.97·10–4 4.02·10–5 2.44·10–6 1.50·10–7 – – 

W(1.1) 

N 3.7917 3.7915 3.7915 3.7915 3.7915 3.7915 

Δk(Pot) 1.13·10–3 6.98·10–5 5.96·10–6 6.42·10–7 1.89·10–7 – 

Δ(k,k–1) – 1.11·10–3 6.56·10–5 5.60·10–6 4.99·10–7 – 

Δ(6,k) 1.13·10–3 4.02·10–5 2.44·10–6 4.99·10–7 – – 
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1 2 3 4 5 6 7 8 

W(2) 

N 4.8597 4.9240 4.9179 4.9164 4.9167 4.9169 

Δk(Pot) 0.0426 0.0150 6.11·10–3 2.86·10–3 1.39·10–3 – 

Δ(k,k–1) – 0.0372 0.0104 3.92·10–3 1.66·10–3 – 

Δ(6,k) 0.0431 0.0146 5.43·10–3 1.66·10–3 – – 

W(3) 

N 4.9465 5.2941 5.3824 5.4042 5.4068 5.3934 

Δk(Pot) 0.1412 0.0695 0.0457 0.0330 0.0252 – 

Δ(k,k–1) – 0.0876 0.0357 0.0176 0.0100 – 

Δ(6,k) 0.1414 0.0609 0.0273 0.0100 – – 

Γ(4) 

N 5.9436 6.1125 6.1128 6.1106 6.1107 6.1108 

Δk(Pot) 0.0745 0.0221 7.62·10–3 2.82·10–3 1.18·10–3 – 

Δ(k,k–1) – 0.0621 0.0164 5.42·10–3 1.96·10–3 – 

Δ(6,k) 0.0740 0.0218 7.12·10–3 1.96·10–3 – – 

 
For M/G/1/m systems, we test the obtained results using the potential method 

[8], which allows us to calculate the steady-state probabilities 
jp  of the presence j  

customers in a queueing system. 

For G/G/n/m systems, the obtained results are verified using simulation models 

constructed with the help of the GPSS World tools [9]. The results obtained using 

GPSS World slightly differ from one another for different numbers of library ran-

dom-number generators used for simulating random variables, i.e., times elapsed be-

tween two consecutive arrivals and service times. Therefore, we use averaged results 

obtained using simulation models with different values of random-numbers genera-

tors that take on values of natural numbers from 6 to 10. 

Let us introduce the designation: N  is the average number of customers in the 

queueing system, and 
16 15 15
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Here ( )j Potp  and ( )j kp  are values of probabilities jp  obtained using the potential 

method and kH -approximation respectively ( ( ) j Pot jp p ); ( )j simp  is the average 

value of probabilities ( , ) ,j sim ip  obtained by means of the simulation model using the 

number і of random-numbers generator for 6 10, i  n  is number of queueing 

system channels. Thus, the quantities ( )k Pot  and ( )k sim  are measures of devia-

tions of the distributions ( ){ }j kp  from distributions ( ){ }j Potp  and ( ){ }j simp  respec-

tively, and the quantities ( , 1)k k  and (6, ) k  give an opportunity to estimate the de- 

viation of distributions ( ){ }j kp  from distributions ( 1){ }j kp  and (6){ }jp  respectively. 
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In Table 2, we have results of the calculation of steady-state characteristics of 

the M/G/1/15 systems with different G-distributions. Those values of ( )k Pot  and 

(6, ) k  (2 5), k  that are either identical or are at least numbers of the same  

order, are bolded. Note that only for distributions (0.49), (0.5) W  ( 4, 5k ) and 

(0.9)W  ( 5k ) deviations ( )k Pot  and (6, ) k  are numbers that differ in one order. 

This means that in most cases we can use values (6, ) k  to evaluate the accuracy of 

the approximation of the distribution 
( ){ }j kp  to the true { }jp  for 2 5. k  

The results presented in Table 2 indicate that the values of absolute deviations 

( )k Pot  and (6, ) k  decrease with increasing order of kH -distributions in approxi- 

mations, as well as the values of ( , 1) ,k k  which decrease with increasing of k 

means that the values of distribution ( ){ }j kp  with each step getting closer to a true 

distribution { }.jp  With the growth of the variation coefficient of distributions after 

the value of 1 ,V  as expected taking into account the behavior of deviations 

( ),k F  the values of the absolute deviations ( )k Pot  and (6, ) k  also increase. For 

the distribution (0.9)W  the deviation 4 ( )  F  and, consequently, the values of 

„probabilities” of the distribution (4){ }jp  go beyond the interval [0, 1]. 

Table 3. Rating lists of the G/G/1/15 systems with Г(0.7)-distributions in order of growth of values 

Δ(6,2), Δ2(sim) and Δ(6,5) according to the results of calculations of steady-state distributions 

No. 
The name and order of the values of characteristics for which the rating list is compiled 

Δ(6,2) Δ2(sim) Δ(6,5) 

1 M/Г(0.7) 

10–5 

Г(0.7)/Г(0.7) 

10–4 

Г(0.7)/M 10–11 

2 Г(0.7)/M M/Г(0.7) M/Г(0.7) 10–10 

3 Г(0.7)/Г(0.7) Г(0.7)/M Г(0.7)/Г(0.7) 10–9 

4 W(0.8)/Г(0.7) 

10–4 

Г(0.7)/W(0.8) Г(0.7)/W(0.8) 10–8 

5 Г(0.7)/W(0.8) W(0.8)/Г(0.7) Г(0.7)/W(0.3) 

10–7 6 Г(1.1)/Г(0.7) Г(1.1)/Г(0.7) Г(0.1)/Г(0.7) 

7 Г(0.7)/Г(1.1) 

10–3 

Г(0.7)/Г(1.1) 

10–3 

Г(0.49)/Г(0.7) 

8 Г(0.7)/Г(0.49) Г(0.7)/Г(0.49) Г(0.7)/Г(0.49) 

10–6 

9 Г(0.49)/Г(0.7) Г(0.49)/Г(0.7) Г(0.001)/Г(0.7) 

10 U/Г(0.7) U/Г(0.7) Г(0.7)/Г(0.1) 

11 Г(0.7)/W(0.3) Г(0.7)/W(0.3) Г(0.7)/Г(1.1) 

12 Г(2)/Г(0.7) Г(2)/Г(0.7) W(0.3)/Г(0.7) 

13 Г(0.7)/U 

10–2 

Г(0.7)/U 

10–2 

Г(0.7)/Г(0.001) 

14 W(0.3)/Г(0.7) W(0.3)/Г(0.7) Г(1.1)/Г(0.7) 

15 Г(0.7)/Г(0.1) Г(0.7)/Г(0.1) W(0.8)/Г(0.7) 

16 Г(0.7)/Г(0.001) Г(0.7)/Г(0.001) Г(0.7)/U 

17 W(2)/Г(0.7) W(2)/Г(0.7) U/Г(0.7) 

18 Г(0.1)/Г(0.7) Г(0.1)/Г(0.7) Г(2)/Г(0.7) 
10–4 

19 Г(0.001)/Г(0.7) Г(0.001)/Г(0.7) Г(0.7)/Г(2) 

20 Г(0.7)/Г(2) Г(0.7)/Г(2) W(2)/Г(0.7) 

10–3 
21 Г(0.7)/W(2) Г(0.7)/W(2) Г(0.7)/Г(4) 

22 Г(0.7)/Г(4) Г(0.7)/Г(4) Г(0.7)/W(2) 

23 Г(4)/Г(0.7) Г(4)/Г(0.7) Г(4)/Г(0.7) 
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Table 3 gives rating lists of the G/G/1/15 systems with Г(0.7)-distributions in  
 

order of growth of values (6,2) 2( ),  sim  and (6,5)  according to the results of calcu-

lations of steady-state distributions ( ){ }j kp  and ( ){ }.j simp  The order of values of 

deviations (6,2) 2( ),  sim  and (6,5)  is also indicated. For deviations (6,2)  and 

2( )sim  the order in the lists and the order of the values almost completely coincide, 

minor differences are only in the first five positions. Consequently, in order to  
 

estimate the deviation of the distribution (2){ }jp  from the true one, instead of the 

deviation 2( ) sim  from the distribution ( ){ }j simp  obtained using the simulation 

model, you can use the value (6,2).  The order of the values of deviations (6,5)  

varies from 10
–11

 to 10
–6

, and only for the last six positions, corresponding to sys- 
 

tems with distributions for which the value of the variation coefficient 2,V  it 

ranges from 10
–4

 to 10
–3

. Consequently, taking into account the value of deviations  
 

(6,5) ,  we can state the high accuracy of the approach of steady-state distributions 

( ){ } ( 5, 6)j kp k  to the true distribution for systems with distributions for which 

the value of the variation coefficient 2.V  

Comparison of distributions ( ){ }j kp  with distributions ( ){ }j simp  obtained using 

the simulation model, for 3k  does not provide objective information about the 

approach of ( ){ }j kp  to the true distribution, since the minimum values of the devia-

tion of the distribution ( ){ }j simp  from the true distribution are numbers of the order 

10
–4

 or 10
–3

. 

Table 4 gives results of calculation of steady-state distributions ( ){ }j kp  for the 

G/G/n/15 systems with different number of channels n. We see that for some 
 

systems, increasing the number of channels leads to a slight increase the deviations  
 

(6, ) k  by at most one order. As in the case of single-channel systems, the values of 

deviations (6,2)  and 2( ) sim  are close, and deviations 6( ) sim  are numbers of order 

from 10
–4

 to 10
–3

. The order of values of deviations (6,5)  varies from 10
–8

 tо 10
–3

 

and only for the Г(4)/Г(0.001)/n/15 systems ( 2, 3n ) the deviations 6( ) sim  and 

(6,5)  are numbers of order 10
–2

. If we consider the values of 6( ) sim  and (6,5)  not 

bigger than 10
–1

, as the criterion of sufficient accuracy of distribution { }jp   

approximation by means of distribution (6){ },jp  then we can assert that this accu-

racy is achieved for the G/G/n/m systems ( 1, 2, 3n ) with distributions ( ) V  and 

( ),W V  for which the coefficient of variation satisfies inequalities 4V  and 3V  

respectively. 
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Table 4. Results of calculations of steady-state distributions {pj(k)} for the G/G/n/15 

systems with n = 1, 2 and 3 

The name 

of the system 
n Δ(6,2) Δ(6,3) Δ(6,4) Δ(6,5) Δ2(sim) Δ6(sim) 

M/Г(1.1)/n/15 

1 7.97·10–4 4.02·10–5 2.44·10–6 1.50·10–7 0.0011 0.0006 

2 1.49·10–3 2.39·10–4 4.11·10–5 6.72·10–6 0.0015 0.0006 

3 1.63·10–3 3.72·10–4 9.22·10–5 1.92·10–5 0.0021 0.0007 

Г(1.1)/M/n/15 

1 2.08·10–4 5.20·10–6 5.03·10–7 4.77·10–8 0.0007 0.0007 

2 4.50·10–4 1.31·10–5 6.18·10–7 4.56·10–8 0.0010 0.0007 

3 4.46·10–4 1.58·10–5 8.66·10–7 5.32·10–8 0.0008 0.0006 

Г(0.001)/Г(1.1)/n/15 

1 4.70·10–3 7.91·10–4 1.83·10–4 5.58·10–5 0.0047 0.0003 

2 5.69·10–3 8.47·10–4 1.98·10–4 3.97·10–5 0.0056 0.0003 

3 4.96·10–3 5.57·10–4 2.74·10–4 6.81·10–5 0.0056 0.0010 

Г(1.1)/Г(0.001)/n/15 

1 4.54·10–3 6.41·10–4 8.85·10–5 1.19·10–5 0.0044 0.0004 

2 0.0146 3.24·10–3 3.67·10–4 1.19·10–4 0.0148 0.0005 

3 0.0152 6.41·10–3 1.21·10–3 2.85·10–4 0.0157 0.0006 

U/Г(1.1)/n/15 

1 2.07·10–3 2.95·10–4 3.93·10–5 1.57·10–5 0.0018 0.0004 

2 3.40·10–3 3.79·10–4 8.28·10–5 1.74·10–5 0.0036 0.0005 

3 3.05·10–3 5.00·10–4 1.57·10–4 2.71·10–5 0.0032 0.0004 

Г(1.1)/U/n/15 

1 3.51·10–3 2.52·10–4 3.40·10–5 9.51·10–6 0.0034 0.0003 

2 6.68·10–3 1.46·10–3 2.54·10–4 5.45·10–5 0.0069 0.0015 

3 7.21·10–3 1.97·10–4 6.07·10–4 2.22·10–4 0.0075 0.0007 

Г(0.7)/Г(1.1)/n/15 

1 1.18·10–3 7.76·10–5 1.43·10–5 1.43·10–6 0.0014 0.0004 

2 1.83·10–3 3.43·10–4 5.93·10–5 8.85·10–6 0.0019 0.0006 

3 1.87·10–3 4.69·10–4 1.23·10–4 2.56·10–5 0.0020 0.0007 

Г(1.1)/Г(0.7)/n/15 

1 4.96·10–4 8.41·10–5 1.35·10–5 1.87·10–6 0.0008 0.0007 

2 9.62·10–4 4.97·10–5 6.69·10–6 6.69·10–7 0.0012 0.0007 

3 8.93·10–4 5.52·10–5 4.41·10–6 1.91·10–6 0.0011 0.0007 

Г(1.1)/Г(1.1)/n/15 

1 7.85·10–4 5.88·10–5 8.86·10–6 1.68·10–6 0.0009 0.0005 

2 1.64·10–3 2.26·10–4 3.89·10–5 6.53·10–6 0.0020 0.0009 

3 1.84·10–3 3.54·10–4 8.57·10–5 1.86·10–5 0.0022 0.0006 

Г(4)/Г(1.1)/n/15 

1 0.0831 0.0231 8.83·10–3 2.64·10–3 0.0828 0.0020 

2 0.0812 0.0238 8.83·10–3 2.63·10–3 0.0810 0.0020 

3 0.0791 0.0234 8.47·10–3 2.55·10–3 0.0788 0.0019 

Г(1.1)/Г(4)/n/15 

1 0.0697 0.0208 6.84·10–3 1.89·10–3 0.0706 0.0016 

2 0.1166 0.0379 0.0146 4.61·10–3 0.1172 0.0043 

3 0.1269 0.0520 0.0199 6.69·10–3 0.1282 0.0080 

Г(4)/Г(0.001)/n/15 

1 0.1153 0.0336 0.0146 5.25·10–3 0.1125 0.0045 

2 0.1610 0.0770 0.0443 0.0231 0.1894 0.0351 

3 0.1618 0.0916 0.0568 0.0238 0.2001 0.0506 

Г(0.001)/Г(4)/n/15 

1 0.1150 0.0203 7.89·10–3 2.52·10–3 0.1138 0.0028 

2 0.1343 0.0441 0.0173 5.11·10–3 0.1331 0.0029 

3 0.1284 0.0581 0.0240 7.73·10–3 0.1280 0.0059 
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Let 1V  and 2V  denote the variation coefficients of the times elapsed between 

two consecutive arrivals and the service times of the G/G/n/m system. For queue-

ing systems with distributions having small coefficients of variation, namely, the 

condition 1 2 0.6 V V  is fulfilled, a significant part of the probabilities of distribu- 

tion { }jp  is less than 10
–5

, that is the distribution has a “tail”, which, as the calcula- 

tion showed, may lead to the appearance of pseudo-probabilities in distributions 

( ){ }.j kp  

4. Conclusions 

If for variation coefficients of distributions of the service times and the  

times elapsed between two consecutive arrivals, conditions 1 2 0.6 V V  and 

1 2max{ , } 2V V  are fulfilled, then the application of hyperexponential approxima-

tion allows us to calculate steady-state probabilities of non-Markovian queueing 

systems with high accuracy (higher than in the case of using simulation models). 

These probabilities are solutions of a system of linear algebraic equations obtained 

by the method of fictitious phases. To find parameters of the kH -approximation of 

a certain distribution with a given coefficient of variation, it is sufficient to solve 

the system of equations of the moments method only for the case of any one given 

mean value of this distribution since roots of the equations of the moments method 

are invariant with respect to the scale transformation. For the values 1V  of the 

variation coefficient, these roots are complex-valued but the corresponding pseudo-

function of the distribution by law kH  is a real-valued function, and its possible 

unbounded growth only in some cases leads to the impossibility of obtaining a real 

distribution ( ){ }j kp  which is close to the true distribution. Computing deviations 

( , 1)k k  and (6, ) k  allows us to track the accuracy of approaching distributions 

( ){ }j kp  to the true distribution without the need to use simulation models. 

An inversely proportional dependence between values of deviations ( )k F  (see 

Table 1) and the accuracy of the calculations of distributions ( ){ }j kp  exists but it 

weakens with increasing k. For distributions W(0.7), W(0.8), W(0.9) and W(0.95) 

for some values of k the deviation ( ) .  k F  For these values of k the probabili- 

ties ( )j kp  can be complex-valued or go beyond the interval [0, 1].  
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