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Abstract. Jack bean urease has been used as a good catalyst for hydrolysis of urea in 

various applications such as biotechnology and biomedical engineering. The wide range 

of applications require proper understanding of the thermal inactivation of the enzyme. 

Consequently, the theoretical analysis of the enzyme kinetic of the thermal inactivation 

is required. In this paper, a new iterative method proposed by Daftardar-Gejiji and the 

Jafari method is applied to analyse the kinetic of thermal inactivation of jack bean urease 

(EC3.5.1.5). The kinetics of the urease consist of three-reaction steps and included the 

Arrhenius equation for temperature-dependent rate constants as well as the temperature 

change in the initial heating period. The approximate analytical solutions are verified with 

results of numerical method using Runge-Kutta with the shooting method, and good agree-

ments are established between the results of the methods. From the analytical investigation, 

it is established that the molar concentration of the native enzyme decreases as the time 

increases while the molar concentration of the denatured enzyme increases as the time 

increases. The time taken to reach the maximum value of the molar concentration of the 

native enzyme is the same as the time taken to reach the minimum value of the molar con-

centration of the denature enzyme. It is hoped that the information given in this theoretical 

investigation will assist in the kinetic analysis of thermal inactivation of the experimental 

results over handling rate constants and molar concentrations.  
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1. Introduction 

Functionally, urease (urea amino hydrolase E.C.3.5.1.5) are parts of the super-

family of amidohydrolases and phosphotriesterases. It is a highly efficient catalyst 

that catalyses the hydrolysis of urea into carbon dioxide and ammonia. It catalyses 

at a rate approximately 10
14
 times faster than the rate of the non-catalysed reaction [1]. 
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The hydrolysis of urea is catalysed by urease to produce ammonia and carbamate, 

and the carbamate produced is subsequently degraded by spontaneous hydrolysis to 

produce another ammonia and carbonic acid. Urease activity tends to increase 

the pH of its environment as it produces ammonia.  

Jack bean urease, which is the most widely used plant urease, is a nickel 

containing oligomeric enzyme exhibiting a high degree of specifity to urea [2]. 

The importance and applications of the urease as a good catalyst for hydrolysis 

of urea have attracted several research interests [3-15] especially in biotechnology 

and biomedical engineering. Also, the thermostability of jack bean urease has 

often been a subject of investigations [14]. However, there are few studies where 

the temporal loss of enzyme activity and the kinetic analysis of heat induced decay 

of enzyme activity were presented. Moreover, none of these studies involved con-

sistent evaluations of kinetics of the urease inactivation. Most of the past studies 

described the complex mechanisms of thermal deactivation of enzymes as a “one 

step - two states” process where the native (active) form is transformed in the dena-

turated (inactive) form by a first order unimolecular irreversible reaction [14]. 

This unifying simplification is of interest for researchers focusing attention on 

the phenomenological process rather than the mechanistic description of the kinet-

ics of heat induced enzyme deactivation. However, the multi-temperature evalua-

tions revealed that an adequate kinetic model has to incorporate at least three 

reaction steps [16]. Although, the three-step mechanism model of inactivation 

of the enzyme has been developed by Illeova et al. [16], there is no provision 

of either exact or approximate analytical solutions (except by Ananthi et al. [16]) 

for the predictions of model concentrations of the native enzyme, denature enzyme 

and temperature for thermal inactivation of urease. Ananthi et al. [16] applied 

the homotopy analysis method to develop approximate analytical solutions for 

the analysis of kinetic and thermal inactivation of the enzyme. However, the use of 

HAM in the analysis of linear and nonlinear equations requires the determination 

of an auxiliary parameter that will increase the computational cost and time. Also, 

the lack of rigorous theories or proper guidance for choosing initial approximation, 

auxiliary linear operators, auxiliary functions, auxiliary parameters, and the re-

quirements of conformity of the solution to the rule of coefficient ergodicity, limits 

the applications of HAM. Moreover, such a method requires a high level of skill 

in mathematical analysis. Consequently, a direct and relatively simple method 

is needed to establish an analytical solution for the kinetic of thermal inactivation 

of the urease.  

The new iterative method by the Daftardar-Jafari method (DJM), developed 

in 2006 has proven to be highly efficient in solving linear and nonlinear problems 

of integer and fractional order [17-24]. DJM is an improvement on the Adomian 

decomposition method. However, unlike the Adomian decomposition method, 

where the calculation of the tedious Adomian polynomials is needed to deal with 

nonlinear terms, DJM handles linear and nonlinear terms in a simple and straight-

forward manner without any additional requirements. The method converges to 

the exact solution if it exists through successive approximations [17-24]. It comes 
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with the associated error control procedures. DJM solves nonlinear differential 

equations of integral and fractional order without perturbation, linearization, 

discretization or a round-off error. It reduces the complexity of expansion of 

derivatives and the computational difficulties of the other traditional methods. It is 

capable of greatly reducing the size of computational work while still accurately 

providing the series solution with a fast convergence rate [17-24]. Therefore, in this 

work, a new iterative method proposed by Daftardar-Gejiji and Jarari (DJ method) 

is applied to analyze the kinetic of thermal inactivation of jack bean urease 

(EC3.5.1.5). The developed analytical solutions are used to study the effects of the 

parameters of the models on the molar concentration of the native and denatured 

enzyme. 

2. Model formulation  

The three - step mechanism of inactivation with a dissociation reaction of 

the native form of the enzyme, N, into a denatured form, D, and with two parallel 

association reactions of the native and denatured forms into irreversible denatured 

enzymes forms �� and ��, respectively. 

 1

1

2
+

−

���⇀↽���

k

k
N D    2�

��

� ��   2�
��
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where ���, �, �� and �� represent the rate constants of individual reactions. 

The material balances equations for �, � and temperature are given as follows:  
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1 1 3
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+ −
= − + −
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k c k c k c

dt
 (2a)  
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 ( )= −
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dT
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dt
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Initial conditions are 

 ���0
 � 1,���0
 � 0 , ��0
 � 30 � ��, (3) 

The kinetic model was formed by the set of nonlinear ordinary differential equa-

tions (Eqs. (2a)-(2c)). The core of the kinetic model was formed by the material 

balances of the forms N and D (Eqs. (2a) and (2b)). The third equation of the 

model was the enthalpy balance (Eq. (2c)) describing the initial heating period 

Let cN , cD , ���, �	�, �� and �� by X, Y, �, �, � and �, respectively, Eqs. 2a  
and 2b become  
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 2 2
2

dX
aX bY dX

dt
= − + −  (4a)  

 ( ) 2
2 2= − +

dY
aX b c Y

dt
 (4b)  

 �(0) = 1,	
(0) = 0 (5)  

while the exact solution of Eq. (2c) is given as 

 ( ) 30
Kt

B
T t T e

−

= +  (6) 

3. Method of solution: Daftardar-Gejiji and Jarari Metod 

(DJ method)  

It is very difficult to develop a closed-form solution for the above nonlinear 

Eqs. (4a) and (4b). Therefore, a new iterative method proposed by Daftardar-Gejiji 

and Jarari (DJ method) is applied to analyze the nonlinear equation. The basic 

definitions and procedure of the method are given as follows: 

Consider the following general functional equation 

 ( ) ( ) ( )( )= +u x f x N u x  (7) 

where N is a nonlinear operator from a Banach space � → �	and f is a known func-

tion ( )1 2
, ,...=

n
x x x x . The solution u in Eq. (7) have a series solution of the form 

 ( ) ( )
0

∞

=

=∑ i

n

u x u x  (8) 

The nonlinear operator N can be decomposed as  
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From equations (8) and (9), equation (7) is equivalent to  
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We define the recurrence relation  
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then  

 ( ) ( )1 0m m
u u N u u+ + = + +L L  (12) 

and  

 
0 0

∞ ∞

= =

 
= +   

 
∑ ∑i j

i j

u f N u  (13) 

The k - term approximate solution of Eq. (7) is given by  

 
0 1 1k

u u u u
−

= + + +L  (14) 

Integrating the above Eqs. (4a) and (4b) 

 ( ) ( )2 2

0

0 2

t

X X aX bY dX dt= + − + −∫  (15a) 

 ( ) ( )( )2
0

0 2 2= + − +∫
t

Y Y aX b c Y dt  (15b) 

Appling the initial condition, ( ) ( )0 1, 0 0= =X Y , we have,
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t
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 ( )( )2
0

2 2= − +∫
t

Y aX b c Y dt  (16b) 

From Eqs. (16a) and (16b) 

 [ ]0 1=X , ( ) ( )2 2

1

0

, 2

t

N X Y aX bY dX dt= − + −∫  (17a) 

and  

 [ ]0 0=Y , ( ) ( )( )22

0

, 2 2= − +∫
t

N X Y aX b c Y dt  (17b) 

Following DJM  

 [ ] [ ] [ ]( ) [ ] [ ] [ ]( )2 2

1

0
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t
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After the integration, we have 

 [ ] ( )1 2= − +X a d t  (19) 

Also, 

 [ ] [ ] [ ]( ) [ ] ( ) [ ]( )22

0

1 0 , 0 2 0 2 0= =  + +  ∫
t

Y N X Y a X b c Y dt  (20) 

Which gives 

 [ ]1 2=Y at  (21) 

and 

 [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]( )1 1
2 , 2 0 X 1 , 0 1 0 , 0= + + −X Y N X Y Y N X Y  (22) 

 

[ ] [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )( )

[ ] [ ] [ ]( )

2 2

0

2 2

0

2 0 X 1 0 1 2 0 X 1

0 0 2 0

t

t

X a X b Y Y d X dt

aX bY d X dt

= − + + + −  +

             − − + −  

∫

∫

 (23) 

The solution of Eq. (23) is given as 

 [ ] ( )2 2 2 2 2 2 3 2 3 2 3 3 31
2 3 18 24 8 4 16 16

6
X a t adt d t a bt a dt ad t d t= + + + − − −  (24) 

Also, for 

[ ] [ ] [ ]( ) ( ) [ ] [ ]( )( ) [ ] ( ) [ ]( )2 2

0 0

2 2 0 1 2 0 1 2 0 2 0= + − + + − + +∫ ∫
t t

Y a X X b c Y Y dt aX b c Y dt  

  (25) 

one gets 

 [ ] ( )2 2 2 2 3 2 31
2 3 6 8 8

3
Y a t adt a bt a ct= − − − −  (26) 

Furthermore, according to DJM 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]( )1 1
3 , 3 0 X 1 X 2 , 0 1 2 0 X 1 , 0 1= + + + + − + +X Y N X Y Y Y N X Y Y

  (27) 
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which gives 

[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( )( )

[ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( )( )

2 2

0

2 2

0
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Therefore,  

 [ ] [ ] [ ] [ ] [ ]0 1 2 3= + + + +LX t X X X X  (29a) 

 [ ] [ ] [ ] [ ] [ ]0 1 2 3= + + + +LY t Y Y Y Y  (29b) 

Equations (29a) and (29b) form the approximate analytical solutions of concen-

trations of the native and denatured enzyme. The analytical solutions are simulated 
and the results are shown below.  

4. Results and discussion 

Tables 1 and 2 show the comparison between the results of DJM and NM. 

The obtained results of using DJM as compared with the numerical procedure 

using the Runge-Kutta method coupled with the shooting method are in good 
agreements. The high accuracy of DJM gives high confidence about validity of 

the method in providing solutions to the problem.  

Table 1 

Comparison of results for X(t) 

The results of DJM and numerical methods for X(t) for 

� = 1, � = 0.01, � = 0.001,� = 0.05 

X(t) 

X DJM NUM Residue  

0.00 1.000000 1.000000 0.000000 

0.10 0.896320 0.896320 0.000000 

0.20 0.804245 0.804239 0.000006 

0.30 0.722402 0.722362 0.000040 

0.40 0.649643 0.649479 0.000164 

0.50 0.585024 0.584542 0.000482 

0.60 0.527795 0.526637 0.001158 

0.70 0.477382 0.474965 0.002417 

0.80 0.433385 0.428824 0.004561 

0.90 0.395563 0.387599 0.007964 

1.00 0.363832 0.350748 0.013084 
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Table 2 

Comparison of results for Y(t) 

The results of DJM and numerical methods for X(t) for 

� = 1, � = 0.01, � = 0.001,� = 0.05 

Y(t) 

X DJM NUM Residue  

0.00 0.000000 0.000000 0.000000 

0.10 0.189399 0.189399 0.000000 

0.20 0.359092 0.359101 0.000009 

0.30 0.511108 0.511178 0.000070 

0.40 0.647188 0.647477 0.000289 

0.50 0.768785 0.769644 0.000859 

0.60 0.877067 0.879150 0.002083 

0.70 0.972920 0.977311 0.004391 

0.80 1.056950 1.065300 0.008350 

0.90 1.129470 1.144170 0.014700 

1.00 1.190520 1.214840 0.024320 

 

  
Fig. 1. Molar concentrations of native and denatured 

enzyme when 	��� = 1,��� = 0.01,�� = 0.001, 

�� = 0.05 

Fig. 2. Effects of dissociation native rate constant 

(���) on molar concentration of denatured enzyme 

when ��� = 	0.01,�� = 0.001,�� = 0.05 

  
Fig. 3. Effects of dissociation native rate constant 

(���) on molar concentration of native enzyme 

when	��� = 0.01,�� = 0.001,�� = 0.001 

Fig. 4. Effects of dissociation native rate constant 

(���) on molar concentration of native enzyme 

when ��� = 0.88,�� = 0.001,�� = 0.00028 
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Fig. 5. Effects of dissociation native rate constant 

(���) on molar concentration of denatured enzyme 

when	��� = 0.1,�� = 0.00026,�� = 0.001 

Fig. 6. Effects of dissociation native rate constant 

(���) on molar concentration of native enzyme 

when ��� = 1, �� = 0.1,�� = 0.001 

 
Fig. 7. Temperature variation with time of the enzyme 

when	��� = 1,�� = 0.1,�� = 0.001 
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the effects of the dissociation native rate constant (���) on molar concentration 

of the native enzyme when ��� = 0.88,�� = 0.001,�� = 0.00028 while Figure 5 

shows the effects of dissociation native rate constant (���) on molar concentration 

of the denatured enzyme when ��� = 0.1,�� = 0.00026,�� = 0.001. Effects of 

the dissociation native rate constant (���) on molar concentration of native enzyme 

when	��� = 1,�� = 0.1,�� = 0.001	are shown in Figure 6.  

Figure 7 shows the temperature history of the enzyme when ��� = 1,

�� = 0.1,�� = 0.001. Also, effects of bath temperature on the temperature history 

are depicted in the figure. The temperature of the enzyme decreases linearly with 

time. It could be seen that as the bath temperature, �� increases, the tempera-

ture of the enzyme increases.  

4. Conclusions 

In this work, approximate analytical solutions for the analysis of the kinetic 

model of thermal inactivation of the jack bean urease (E.C.3.5.1.5) have been de-

veloped using a new iterative method proposed by Daftardar-Gejiji and Jafari (DJ 

method). The analytical solutions are verified with a numerical solution using the 

Runge-Kutta method coupled with the shooting method and good agreements were 

established. It is hoped that the information given in this theoretical investigation 

will assist in the kinetic analysis of the experimental results over handling rate con-

stants and molar concentrations. 

Nomenclature 

cN - molar concentration of the native enzyme form [mole/cm] 

cD - molar concentration of the denaturedenzyme form [mole/cm] 

k–1, k+1, k2, k3 - rate constants of individual reaction [s
–1
] 

k’–1, k’2, k’3 - modified rate constants [s
−1
] 

� - coefficient in the enthalpy balance [s] 

�B - bath temperature [K] 

� - temperature [K] 

� - time 
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