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Abstract. This short note is devoted to the analysis of the trace of a product of two matrices 

in the case where one of them is the inverse of a given positive definite matrix while 

the other is nonnegative definite. In particular, a relation between the trace of A
–1
H and 

the values of diagonal elements of the original matrix A is analysed.  
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1. Introduction  

Traces of matrix products are of special interest and have a wide range of appli- 

cations in different fields of science such as economics, engineering, finance, hydro- 

logy and physics. They also arise naturally in the applications of mathematical sta- 

tistics, especially in regression analysis, [1-3] or the analysis of discrete-time statio- 

nary processes [4]. There are papers devoted to the role of matrix-product-traces 

in the description of the probability distributions of quadratic forms of random vec-

tors, [1, 5], or to the development of approximate boundaries for their (i.e. product 

traces) values [6-11]. In some statistical applications the product under consideration 

involves inverse A
–1

 of a given positive definite matrix A. In particular, it takes 

place in the Bayesian analysis in regression modelling, where the matrix A can be 

interpreted as the covariance matrix of the disturbances and/or a priori distribution 

of unknown system-parameters [2, 3].  

In this paper, we present an equation concerning traces of certain matrix prod-

ucts involving an inverse A
–1 

of a given matrix A, and next this equation is used to 

obtain a result relating the changes in the values of the diagonal elements of the 

original matrix A with the values of the considered trace. This note is organized 

as follows. In the next section we recall some definitions and facts that will be 

necessary to state and prove the new results. In Section 3, we state the main equa-

tion and then, in Section 4 we present some possible applications.  
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2. Preliminary definitions, facts and notation  

 All of the matrices considered here are real. For any square matrix A = [aij]n×n 

the symbol c

ijA  denotes the cofactor of the element aij, and adj(A) denotes the 

transpose of a matrix with elements being the cofactors of appropriate elements 

of A, i.e. adj(A) = [ c

ijA ]
T
.  

 For any square matrix A we write A > 0 (or A ≥ 0) if the matrix is positive 

definite (or positive semi-definite), i.e. A is symmetric and x
T
Ax > 0 for all nonzero 

column vectors x∈R
n
 (or x

T
Ax ≥ 0 for all x∈R

n
). A square matrix is nonnegative 

definite if it is positive definite or a positive semi-definite one. 

The following facts concerning determinants and/or inverses of matrices 

expressed in so-called block forms can be found in various textbooks, see e.g. 

[12, pp. 33-34]. 

Fact 1. 

Let A = [aij]k×k and x be a k-dimensional column vector. Then for any number a 
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Fact 2. 
Let A and B be symmetric matrices. The following equality is true, provided 

that the inverses that occur in this expression do exist  
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with matrices D and E being defined as follows: D = A
–1

C
T
 and E = B – CA

–1
C

T
. 

Fact 3. 
Let A be nonsingular and let u, v be two column vectors with dimensions equal 

to the order of A. Then  
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This useful equation gives a method of computing the inverse of the left-hand 

side of (3) knowing only the inverse of A.  

Definition (Hadamard Product). If A = [aij]n×m and B = [bij]n×m are the matrices 

of the same dimensions nxm, then their Hadamard product is the nxm - matrix А*В 

of elementwise products, i.e. А*В = [aij·bij]n×m  

We have the following results involving Hadamard products. 

Fact 4. 
For any square matrices A, B of the same order, the following equality holds: 

 Tr AB = e
T 

(A*B
T
) e (4) 
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with e being the vector of an appropriate dimension with all coefficients equal 

to unity, i.e. e
T 

= (1,1,..,1). 

 

Schur’s lemma. Let A and B be square matrices of the same order. If these 

matrices are both nonnegative definite then their Hadamard product А*В is also 

nonnegative definite. 

3.  The main result  

Let us consider a square symmetric matrix of order k given in the following 

block-form  

 A = 



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T
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a
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w
 (5) 

Let matrix C have the following block-form: 
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where the constant d equals 
wAw

1

11

T
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Proposition 1  

Let A > 0 and H ≥ 0. Let A11 and H11 be the submatrices obtained by deleting 

the first row and the first column in A and H, respectively. Then the matrix C 

given by (6) is positive definite, the constant d in (6) is a positive one, and 

 Tr(A
–1

H) – Tr(A
11

1− H11) = Tr CH (7) 

Proof. 

Let us note that a11 > 0 and det(A11) > 0 (it is because A > 0). Thus the inverse 

of A can be computed with the help of the Facts 1, 2. Indeed, let us express the ma-

trices D, E that appears in formula (2) using the objects from the matrix given 

in (5):  

D = w
T
/a11 and  

E = 
11

A – ww
T
/a11  

Now, by (2), the inverse of the block matrix takes on the form 
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It results from the Fact 3 that we have the following equality for lower-right 

block in (8): 
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Taking the formula (9) into account we can obtain new forms for the remaining 

three blocks in (8). The first one, in the upper left corner (as a matter of fact 1x1 

matrix), takes on the following form: 
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The second block in the first row can be transformed in the following way: 
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Similarly the third one takes on the form: 
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Now the matrix A
–1

 can be expressed by the following simple formula: 
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Thus, for any matrix H of an appropriate dimension the following equalities 

hold: 

Tr(A
–1

H) = Tr(CH + DH) = Tr(CH) + Tr(DH) = Tr(CH) + Tr(A
11

1− H11) 

Now we show that the number d is positive. 

Indeed, in view of Fact 1 we have: 
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Since the matrix A is positive definite one, both above determinants are positive 

and this yields the positivity of d:  
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To complete the proof we need to show that the matrix C is positive definite 

one. For an arbitrary k-dimensional vector x
T
 = (x1,x2

T
), x1∈R, x2∈R

k–1
 we have  

x
T 

C x = d (x1 – b)
2
, with b = w A

T

11

1− x2. 
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This yields that for any nonzero vector x∈R
k
, x

T 
C x > 0 and thus the matrix C 

is positive definite. 

The proof of Proposition 1 is completed.  

4. Some applications 

First we state a proposition which is a quite straightforward conclusion from 

Proposition 1. 

Proposition 2 

Let the matrices A, H satisfy the assumptions from Proposition 1, and let, 

as previously indicated, symbols A11 and H11 denote the submatrices obtained by 

deleting the first row and the first column in A and H, respectively. Then  

tr(A
–1

H) – tr(A
11

1− H11) ≥ 0 

Proof.  

From Proposition 1 we know that Tr(A
–1

H) – Tr(A
11

1− H11) = Tr CH and that C 

is a positive definite matrix. From Fact 4 we have: 

Tr(CH) = e
T 

(C∗H
T
) e 

 By the assumptions matrix H is nonnegative definite, thus H
T
 is also nonnega-

tive definite. From nonnegative definiteness of the matrices C and H
T
 it follows, 

in the light of the Schur’s lemma, that C∗H
T
 is nonnegative definite as well, and 

consequently e
T 

(C∗H
T
) e ≥ 0. This fact completes the proof.  

 

Let us consider now a symmetric positive definite matrix A = [aij]. Let us define 

a matrix Ax = [αij] related with A by the formula: α11 = a11 – f(x) and αij = aij for all 

remaining elements of A, where R→Df : , D⊆R, is a given real function.  

Proposition 3  

Let A > 0 and H ≥ 0 be square matrices of the same order. Let f be a function 

differentiable on an interval D such that Ax > 0 for all x∈D. Let for all x∈D, a func-

tion RDT →:  be defined as T(x) = Tr(A H
x

−1 ). Then T is nondecreasing (non- 

increasing) if and only if f is nondecreasing (nonincreasing). 

 

Proof. 
It follows from Proposition 1 that  

T(x) = Tr(A H
x

−1 ) = Tr(A
11

1− H11) + D(x)Tr CH/d 
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where 
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While the matrix C and constant d are defined in (6).  

Note that the function T depends on its argument only thru the function D. 

Now a little calculation shows that for each x∈Int(D) the derivative of T does exist 

and can be expressed in the following form:  

d

xD
xfxT
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)(')(

2

'
=  

In view of the assumptions about the matrices A and H and our previous results, 

the ratio 
d

xD CHTr)( 2

 is nonnegative, which completes the proof.  

5. Conclusions  

Due the fact that in our results the matrix H is nonnegative definite, one may 

consider matrices of the form H = ww
T
, with w being a column vector. Because of 

the well-known relation wAw
T
 = Tr(Aww

T
), it is easy to see that the above results 

can be also used for the analysis of the quadratic forms wAw
T
 with A being a given 

symmetric positive definite matrix.  
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