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Abstract. This paper introduces basic theoretical knowledge of coalgebras in computer 

science. Coalgebras are, specifically in category theory, structures defined according to 

an endofunctor. For both algebra and coalgebra, a functor is a convenient and general 

way of defining a signature. We present practical usage of the coalgebras in an example. 

We observe a behavior of a simple Sequencer developed in SLGeometry framework. 

We model its behavior with the simple program written in Python, and we describe its 

behavior within coalgebra of endofunctor. The computation of the values stored in internal 

states is performed coinductively. Our approach can be used in the teaching process of 

formal methods for young software engineers. 
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1. Introduction 

Induction is a well-known mathematical proof method which is also used 

in computer science. The frequent usage of induction in computer science is with 

well-founded sets [1]. With these sets, we are able to define elements by construc-

tors in finite steps. Induction is represented by notions like initial algebras and 

finality. Coinduction is dual notion to induction. It is also a proof method, which 

serves to gain some observations on structures and is used with non-well-founded 

sets or with infinite streams. Coalgebras are a very important part of theoretical 

computer science. Their main rôle is in describing the generated behavior of 

running programs [2, 3]. It is the behavior that can be observed from the outside 

of a machine - for instance on the screen. Typically, we model many problems by 

mathematical programs which seek to maximize or minimize some objective which 

is a function of the decisions [4, 5]. Coalgebra is an abstract notion of observable 
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behavior. It is a study of states and their operations and properties. The set of states 

is usually seen as a black box, to which one has limited access [6]. A relation 

between what is actually inside and what can be observed externally is the founda-

tion of the theory of coalgebras [3]. 

The main goal of this article is to introduce the purpose of coalgebras in com-

puter science and to introduce basic principles of coinductive computation. 

The paper is organized as follows: Section 2 gives us basic notions of functor, 

algebra, coalgebra and category theory. The application of coinduction on Sequencer 

example is presented in Section 3. Experiment about Sequencer’s behavior, check- 

ing of the results and description of Sequencer’s behavior is introduced in Section 4. 

Finally, some conclusions are closing our article. 

2. Basic concepts 

In this section we briefly introduce some basic concepts that we use further. 

Category theory is the algebra of functions. A category is an abstract structure: 

a collection of objects, together with a collection of arrows between them. 

Precisely, a category C is a mathematical structure that consists of a set of objects, 

e.g. �,�, … and a set of morphisms or arrows of the form � ∶ 	�	 → 	� between 
them [7, 8]. 

For any given object � there is designated identity morphism ��� ∶ 	� → �. 
For two morphisms � ∶ 	�	 → 	� and � ∶ 	�	 → 	�, there is designated composite 

morphism � ∘ � ∶ 	�	 → 	�. 
The objects of category can be arbitrary structures, therefore categories are 

useful in computer science, where we often use more complex structures not 

expressible by sets. Morphisms between categories are called functors, e.g. a func-

tor 	 ∶ 	
 → � from a category C into a category D is considered as a structure-

preserving mapping (identities, morphisms and composition) between categories 

[9, 10]. 

Let 	 be a functor. An algebra of the functor 	 is according to [11] a tuple 
(�,�) where: 
• � is the carrier-set of the algebra; 

• the function �:		(�) → � is the algebra structure. 
Dually, an F-coalgebra or F-system is a pair (U, b) consisting of a set	U  

and a function b: U → F(U) [12, 13]. The set U is called the carrier of the system, 

also called the set of states; the function  is called the F-transition structure  
(or dynamics) of the system. When no explicit reference to the functor (i.e., 

the type of the system) is needed, we shall simply speak of system and transition 

structure. Moreover, when no explicit reference to the transition structure is 

needed, we shall often use U instead of (U, b). 
Coalgebras are dual notion to algebras. We show a difference between them 

in an example. What is the main difference between an algebra �:		(�) → � 
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and a coalgebra :	� → 	(�)? Essentially, the difference is between construction 
and observation. An algebra consists of a carrier-set � with a function �:		(�) → � 
going into this carrier �. It tells us how to construct elements in �. Coalgebra con-
sists of a state space � with a function :	� → 	(�) going out of �, in an opposite 
direction. In this case we do not know how to form elements in �, but we only 
have operations acting on �, which may give us some information about � [9]. 

According to [13, 14], the main differences between the theory of universal 

algebra and universal coalgebra is shown in Table 1. 

Table 1 

Comparision of universal algebra and coalgebra 

Universal algebra coinduction 

(∑−)algebra coalgebra = system 

algebra homomorphism system homomorphism 

substitutive relation bisimulation relation 

congruence bisimulation equivalence 

subalgebra subsystem 

initial algebra 
(is minimal, plus induction 

definition principle) 

initial system 
(often trivial) 

final algebra 
(often trivial) 

final system 
(is simple, plus: coinduction 

definition principle) 

3. Coalgebras and SLGeometry 

In this section we introduce SLGeometry framework with its UI controls. In [15] 

we demonstrated the use of triggers and their propagation from one component to 

another as children’s mathematical game to calculate arithmetic sum. We present 

how this game can be described in a formal way, as well as how it could be used 

for teaching coalgebras at the faculty level. 

3.1. SLGeometry 

SLGeometry is an extensible dynamic geometry framework, which is now im-

plemented as a Universal Windows Application on the .NET Framework [15-18]. 

It consists of an expression parser and an extensible functional language (Engine) 

at its core, and a graphical surface (GeoCanvas). The main purpose of the Engine 

is to maintain a set of expressions, stored in named variables, which represent 

the elements of geometric drawings. 

Geometric shapes and visual controls are displayed by GeoCanvas as a response 

to user interaction. Geometric drawings are designated by expressions, built from 
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atomic values, lists and functions applied to parameters. A dynamic of a system 

is evident with each change of a particular variable, then a recursive recalculation 

of all dependent variables is triggered. Since the variables are bound to graphical 

objects and user controls on the screen, the user can change a variable by interact-

ing with the bound object. After that, all dependent objects are recalculated and 

their corresponding graphical objects on the GeoCanvas are updated. 

The main aim of the SLGeometry framework is to improve the development of 

teaching materials and games using it as a foundation for experiments. The motiva-

tion for developing custom UI controls was found on GeoGebraTube (now on [19] 

with more than 450.000 of free and interactive materials) where many teaching 

materials and games could be found. The representation of each of these controls 

is given with a single variable and all controls have properties which determine 

the control’s appearance and behavior. 

In [15] we proposed UI controls with a sequential behavior Sequencer and 

Scorekeeper to demonstrate how to calculate the arithmetic sum of numbers from 1 

to 9. A Sequencer is a counter which cycles through an interval of integer values 

and it behaves like modulo. The interval in the Sequencer can be assigned. An UI 

control Scorekeeper keeps added points when it is triggered. The user clicks on 

a PushButton which then triggers the Sequencer and it's Done property triggers 

the Scorekeeper. To achieve this flow, the given controllers has to be connected to 

each other by the user. If the Sequencer is denoted with variable s, PushButton 

with p and Scorekeeper with k, the connection is given in Table 2. 

Table 2 
Daisy chaining via triggers 

s.Trigger = p.Pressed 

k.Points = s.Value 

k.Trigger = s.Done 

3.2. Formal description of Sequencer 

We use the given example of controllers to demonstrate the modulo as an example 

of sequential behavior that is attractive for the students. It propagates coinductive 

computation and coalgebras in an interesting way. In this case, we use the interval 

of naturals from 0 to 8, so Sequencer properties Min and Max are changed to 0 and 

8, respectively. This represents the congruence class of the modulo 9, denoted as � 
for the presentation of coinduction with this example. Whenever the PushButton 

is pushed, the Sequencer increments the value by 1. 
We use derived function ℎ: ℕ × ℕ → �, which sends its input value to the con-

gruence class of the modulo �: 
ℎ��,�� = 	�	���	�. 

In our case the value of a is 9, i.e. � = 9: 

ℎ��, 9� = 	�	���	9. 
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The value of the Scorekeeper is computed as follows: 

 ℎ��,�� + 	∑(�������), (1) 

where � stands for index and � for quotient value for modulo calculation. 

We define a state for any � as follows: 

 �	 = ���, ℎ��,�� + 	∑(����(�))�, ��		�	 > 	0;

�0,0�,																																						��ℎ������.
� (2) 

A state is defined as a tuple of two values: 

• value � is a number of how many times the PushButton has been pushed; 

• ∑(�′) is a sum of all values given by Sequencer from 0 to �′ and kept by 
the Scorekeeper. 

The states we enclose into the state space �. We define destructor operations 

over the state space as follows: 

����� ∶ 	�	 → ℕ 

���� ∶ 	�	 → ℕ 

�� � ∶ 	�	 → � 
where ℕ is a set of naturals. An operation ����� returns the actual sum stored in 

a state; it is an operation that represents the behavior of the Sequencer. The opera-

tion ����  is triggered by the PushButton and it autoincrements the index of state. 

The last operation �� � generates a new state. The new state appears after pushing 
the button and the value of the index is incremented by 1. This could be expressed 
in a formal way for a state � = ��, ℎ��,�� + 	∑(����(�))� as follows: 

�� = �� ���� = (��!!���, ℎ���!!���,�� + ∑���) 

���� ���� = ��!!��� 
�����(��) = ℎ(��!!���,�) + ∑��� 

We enclose functions ����� and �� � into the coalgebraic specification as follows: 
Operations: 

����� ∶ 	�	 → ℕ 

���� ∶ 	�	 → ℕ 

�� � ∶ 	�	 → � 
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Assertions: 

����� "�� �#�� ����$% = �����#�� ����$ + ℎ(���� "�� �#�� ����$% ,�) 

Creation: 

���������� = 0 

���� ����� = 0 

�����#�� ������$ = 1 

���� #�� ������$ = 1 

We define the coalgebra structure as follows: 

〈�����, ���� ,�� �〉: X → ℕ × ℕ × X. 

The appropriate endofunctor for the coalgebra is 

	�X� = ℕ × ℕ × X. 

By observing the output values of the Sequencer we can formulate the following 
proposition. 

Proposition 1: Let s be a state with  ���� ��� = � and �������� = � (according 
to (2)) and let � ∈ ℕ be a value for modulo calculation. 

If the following congruence 

� ≡ � − 1	����	��, 
holds, then in the state �� = �� ���� with �� = ���� ��′� and �� = �������′� the 
corresponding values are the same: 

�������� = ���������, 
i.e. � = ��. 

Proof: The proof is done by induction. 

(1) In the case � = 1, for any state � let index be some value �, ���� ��� = �. It 
holds, that �������� = ℎ��, 1� + Σ#�������$ = 0. Then for the state �� = �� �(�) 

holds that ���� ���� = � + 1 and ��������� = 0 (according to (2)). 

Thus, the property for � = 1 holds trivially. 

(2) Now we consider, that for some � = ( ∈ ℕ an induction hypothesis 

�������� = ��������� 
holds and we prove the property for � = ( + 1. 
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We present for � = ( what holds. Let �� = �����(�) and ���� = �����(��).  
According to the formal definition (2) at the state with the index � + 1 it holds that 

���� = ℎ�� + 1,(� + �� . 
Since, 

� ≡ ( − 1	(���	() (by definition) 

and 

1 ≡ 1	(���	() (reflexivity of congruence by modulo k), 

by addition of congruence then we have 

� + 1 ≡ (����	k� ⟹ 

� + 1 ≡ 0	����	(� ⟹ 

ℎ(� + 1,�) = 0, 
i.e. 

���� = ��. 

The proof can also follow the following idea: for any � ∈ ℕ, the sequential state 

values are: 

�� = ℎ��,(� + ����, 
���� = ℎ�� + 1,(� + ��. 

We denote a modulo (or remainder) operator simply �	���	, where  be a quo-
tient. Let � be a value 
 � = �( + �( − 1�, (3) 

which is alternatively 

�	���	( = ( − 1 

and (,� ∈ ). 

Adding value 1 to both sides of (3) we get 

� + 1 = �( + �( − 1� + 1 
= �( + (									 
= (�� + 1�					 

which follows to 

(� + 1)	���	( = 0. 
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Then we can express state values as follows: 

 �� = ℎ��,(� + ���� = ( − 1 + ����, (4) 

 ���� = ℎ�� + 1,(� + �� = 0 + �� = ( − 1 + ����. 
From induction hypothesis it follows that state values �� and ���� are equal, 

�� = ����, 
if �	���	( = ( − 1 for given ( ∈ ℕ. 

Now we consider the following congruence for � = ( + 1: 

� ≡ ( + 1	(���	(( + 2)). 

Then we can express state values according (4) for � = ( + 1 as follows: 

�� = ℎ��,( + 2� + ���� = ( + 1 + ����, 
���� = ℎ�� + 1,( + 2� + �� = 0 + �� = ( + 1 + ����, 

which means that state values �� and ���� are equal, 
�� = ����, 

if �	���	(( + 1) = ( for given ( ∈ ℕ. 

				∎ 

Hence, we formulate the following corollaries. 
 

Corollary 1: First occurrence of value � and � , such that � = � ,, defined in Propo-

sition 1 is at index with value � − 1. 
 

Corollary 2: The given tuples appear after each a steps.  

4. Experiment and results 

In this section we present an example of the Sequencer’s behavior. We follow 

the presented example in [15]: we model it in a formal way and then we show its 

behavior by a simple program written in the Python programming language. 

Finally, we compare the results when the quotient is changed. 

At the beginning, the Scorekeeper is in the initial state �� and its sum value 

is 0, i.e. �� = (0,0). After the PushButton is pushed, the next state is generated 
and its value is previous index value incremented by 1. So after the PushButton is 
pushed ten times, the sequence of ten new states appear according to the following 

formula: 

���� = �� �	(��), where 0 ≤ � ≤ 9 in our example. 



Some properties of coalgebras and their rôle in computer science 153

The list of states then looks like: 

 �� 	= 	 �0, 0� �� 	= 	 �6,21� 
 �� 	= 	 �1,1� �	 	= 	 �7,28� 
 �
 	= 	 �2,3� �� 	= 	 �8,36� 
 �� 	= 	 �3,6� � 	= 	 �9, 36� 
 �� 	= 	 �4, 10� ��� 	= 	 �10,37� 
 �� 	= 	 �5,15� 

4.1. Simulation of Sequencer’s behavior 

To check the Proposal in practice, we also demonstrated the Sequencer’s 

behavior by a simple program in the Python programming language. The source 

code is listed in Table 3. 

Table 3 

Python listing of Sequencer’s behavior 

1. import sys   

2.    

3. def h(n, a):   

4.     return (n % a)   

5.    

6. def seq(n, a):   

7.     if (n == 0):   

8.         return (0)   

9.     else:   

10.         return (seq(n - 1, a) + h(n, a))   
11.    
12. f = 0   
13. a = 9   
14.    
15. for i in range(30):   
16.     print("index={}, value={}".format(i, f))   
17.     f = seq(i, a)   

 
We conducted an experiment for different values of � (see line 13 in Table 3). 

Tables 4 and 5 show the concrete computed values for � = 5 and � = 9 (as in 

SLGeometry), for simplicity in the first 30 states. In both cases we can see 

the values as they are generated by the Sequencer. The property in Proposition 1, 

which we proved, can also be observed on the output values. 
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Table 4 

Values for a = 5 

index=0, value=0 

index=1, value=1 

index=2, value=3 

index=3, value=6 

index=4, value=10 

index=5, value=10 

index=6, value=11 

index=7, value=13 

index=8, value=16 

index=9, value=20 

index=10, value=20 

index=11, value=21 

index=12, value=23 

index=13, value=26 

index=14, value=30 

index=15, value=30 

index=16, value=31 

index=17, value=33 

index=18, value=36 

index=19, value=40 

index=20, value=40 

index=21, value=41 

index=22, value=43 

index=23, value=46 

index=24, value=50 

index=25, value=50 

index=26, value=51 

index=27, value=53 

index=28, value=56 

index=29, value=60 

Table 5 

Values for a = 9 

index=0, value=0 

index=1, value=1 

index=2, value=3 

index=3, value=6 

index=4, value=10 

index=5, value=15 

index=6, value=21 

index=7, value=28 

index=8, value=36 

index=9, value=36 

index=10, value=37 

index=11, value=39 

index=12, value=42 

index=13, value=46 

index=14, value=51 

index=15, value=57 

index=16, value=64 

index=17, value=72 

index=18, value=72 

index=19, value=73 

index=20, value=75 

index=21, value=78 

index=22, value=82 

index=23, value=87 

index=24, value=93 

index=25, value=100 

index=26, value=108 

index=27, value=108 

index=28, value=109 

index=29, value=111 

 
Comparing the results of the Sequencer in Table 4 (a = 5) and in Table 5 (a = 9) 

we can see the following: 

– state values in which �	���	� = � − 1 have the same values for index i and 

index i+1; 

– the first occurrence of values � and � , such that � = � ,, defined in Proposition 1 

is at index with value � − 1 in accordance with the Corollary 1; 
– and these given tuples appear after each a steps in accordance with the 

Corollary 2. 

5. Conclusion 

The main goal of this article was to bring a closer view on coalgebras in com-

puter science. We introduced some example and practical examples of coalgebras 

and coinductive computation of state values. The example used with SLGeometry 
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represents a very interesting way of using coalgebras and coinduction. We want to 

extend our approach with the coinduction and bisimulation method when observing 

the output states of a running system. 
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