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Abstract. In this paper the results of studies on stability of the geometrically non-linear 

column (slender system) composed of two rods have been presented. The supporting struc-

ture has a defect in the form of cracks which are present in each of rods. The cracks are 

simulated by means of rotational springs. On the basis of the total potential energy princi-

ple, the boundary problem is being formulated. The results show an influence of the crack 

size on the stability of the column in particular on bifurcation load magnitude. 
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1. Introduction 

The considered columns are classified as slender supporting systems due to 

relation between cross-section dimensions and the total length of the structure. 

In these types of systems the most undesirable phenomena are: flutter instability, 

buckling and non-axially applied external load. The presence of the cracks is also 

very dangerous due to its influence on the dynamic as well as on static behaviour 

of the structure. At the static investigations the presence of a crack affects the 

loading capacity, but what is important is that the capacity may differ depending 

on crack location. 

The crack influence on stability as well as static and dynamic behavior, was dis-

cussed and presented in many scientific papers in recent years. Dimarogonas and 

Anifantis in [1] have studied the stability of beam structures subjected to follower 

and vertical loads. The crack was modelled by a general flexibility matrix which 

expressed the local flexibility of the beam. The same author in [2] introduced 

the Rayleigh principle for an estimation of the change of the natural frequencies 

as well as modes of vibration of the structure with a crack. Bergman and Lee [3] 

have studied the stepped beams and rectangular plates. Chondros [4] has performed 

theoretical, numerical and experimental studies of cracked aluminum beams. Binici 

in [5] has studied single beams in which the multiple cracks were modeled with 

rotational springs. Sokół [6] presented investigations on an influence of single 

crack presence in the cantilever column on vibrations and stability as well as on the 
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amplitude - vibration frequency relationship. Mostly the traditional analysis [7] 

was performed but Sokół and Kulawik [8] have proposed an implementation of 

genetic algorithms in order to find optimum parameters of the system at which 

the structure will be the least sensitive to the crack presence. In the literature two 

different types of problems are studied that take cracks into account. The first one 

is focused on linear problems where the cracks always remain open. The second 

one takes into account the non-linear problems where the crack opens and closes 

in time. In the numerical simulations of cracks the different approach can be found: 

reduction of the cross-section area, definition of complex mathematical functions 

or introduction of rotational springs. The studies performed by Chondros et al. [9] 

and Arif Gurel [10] show that despite rotational spring simplicity the comparison 

of the data of numerical simulations and experimental studies leads to accuracy 

of good results. 

In most scientific papers, the single linear columns and beams with cracks are 

presented. In this paper, the multi-member non-linear column with a crack in each 

of rods is investigated. The boundary problem of multi-member systems is formu- 

lated on the basis of the non-linear differential equations. In this case, the non-linear 

relation strain - transversal deflection is used. The systems are characterized by the 

presence of rectilinear and curvilinear form of static equilibrium. The presence of 

both forms depends on the magnitude of the applied external load. Many scientific 

papers can be found where the phenomenon of the change of the static equilibrium 

form takes place along with the presence of the local and global instability regions 

(see [11, 12]). The external load is being realized by means of an axially applied 

external force with a constant line of action (Euler’s load). The proposed method 

of boundary problem formulation can be easily adapted to the more complicated 

structures, such as flat frames composed of n-elements. The main purpose of this 

paper is to present an influence of the crack size and location on loading capacity. 

The considered crack is present in both rods of the structure. Due to investigations 

of a multi-cracked system the contour graphs are used in order to achieve the best 

method of presentation. The results of simulations allow one to see the areas 

of special care in which the appearance of the crack will quickly lead to destruction 

of the structure. 

2. Boundary problem formulation 

The investigated structure is presented in Figure 1. Two cracks simulated by 

means of rotational springs C
w
 and C

z
 with linear characteristics are present. It is 

assumed that the cracks remain open and they divide the rods into four elements 

indexed as 1, 2, 3, 4. The total length of the column is 4231
lllll +=+= . The exter- 

nal compressive axially applied force (Euler’s load) is placed on the free end of the 

system. The considered system can be composed of two coaxial tubes, tube and rod 

or be a flat frame with the infinite connection stiffness of the end points of rods (3) 

and (4). 
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Fig. 1. Investigated system 

The boundary problem has been formulated on the basis of static criterion of 

stability (δV = 0) where the potential energy V of the system is given by the follow-

ing formula: 
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The geometrical boundary conditions of the column are: 
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On the basis of variation and integration operations performed on (1) into which 

the geometrical boundary conditions are introduced (2a, g), the natural boundary 

conditions can be found: 
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Besides natural boundary conditions the differential equation of transversal dis-

placements (4) and longitudinal ones (5) are obtained: 
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where S
i
 is an internal longitudinal force. The solution of (4) has been adopted 

in the form: 

 ( ) cos( ) sin( )
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The bifurcation load magnitude as well as an influence of the crack size on the 

stability of the column is obtained after an introduction of (6) into boundary condi-

tions. This operation leads to a matrix determinant, which equated to zero, creates 

a transcendental equation used in numerical simulations. 

3. Results of numerical simulations 

The results of numerical simulations are presented in the non-dimensional form 

where the following markings are introduced: magnitude of bifurcation load (7a), 

crack size (7b, c), crack location (7d, e), coefficient of flexural rigidity (7f): 
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In Figures 2-5, two different ranges of the presentation results were used. 

 

 
 Fig. 2. Influence of cracks on bifurcation load magnitude; data: µ = 1, d

w
 = 0.5, d

z
 = 0.01 
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Fig. 3. Influence of the cracks on bifurcation load magnitude; data: µ = 1, d

w
 = d

z
 = 0.5 

 
Fig. 4. Influence of the cracks on bifurcation load magnitude; data: µ = 1, d

w
 = 0.5, d

z
 = 0.75 

 
Fig. 5. Influence of the cracks on bifurcation load magnitude; data: µ = 1, d

w
 = 0.5, d

z
 = 0.99 
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The parameters p, cw, cz are related to the total stiffness of the system. This type 

of substitution is widely used in the presentation of the results and gives a great 

comparison opportunity of the systems loaded by the same type of an external force 

but at different parameters of the structure in which the crack is present. In the 

simulations it is assumed that: ( ) ( ) ( ) ( )
4231

, EJEJEJEJ == . 

Because of a large number of results and different configurations, for the general 

presentation and description the following locations of cracks have been chosen: 

d
w
 = 0.5 and d

z
 = 0.01, 0.5, 0,75, 0.99. Additionally considered crack sizes are 

0.1 < cw < 100, 0.1 < cz < 100 and µ = 0.2, 0.5, 1. 

Taking into account the results from Figure 2, it can be assumed that the lowest 

magnitude of bifurcation load at this configuration (p = 1.25) appears at the smallest 

stiffness of rotational springs (highest crack size). It must be stated that the lowest 

loading capacity is not the lowest one that can be observed (see Fig. 3). The contours 

are unsymmetrical due to different locations of the cracks. The greater the rotational 

spring stiffness, the higher the loading capacity of the column. The bifurcation 

load area, unaffected by cracks can be found at p = π
2
/4 (at cw > 100, cz >100) - 

non-dimensional loading capacity of a cantilever column subjected to Euler’s load. 

In Figure 3, the cracks are placed symmetrically at dw = dz = 0.5, which results 

in symmetrical data distribution but, what is most important, the loading capacity 

decreases with respect to Figure 2, down to p = 1.16 (the lowest loading capacity). 

With the appearance of the crack at dz = 0.75 (Fig. 4) an increase of the lowest 

loading capacity is present (p = 1.49).  

An analysis of Figure 5 shows that the crack presence near the free end of  

the column (dz = 0.99) has small influence on bifurcation load magnitude, regard-

less of its size. The lowest bifurcation load magnitude is p = 1.75. It can be  

assumed that an increase of the unaffected area results in more a rapid loading  

capacity decrease and that the minimum loading capacity decreases at the begin-

ning (crack “shifts” from the fixation in the direction of the free end) and after 

reaching the critical point an increase can be observed. The location of the critical 

point depends on crack location in the other rod as well as on coefficient of flexural  

rigidity. 

The change of bifurcation load magnitude in relation to the coefficient of 

flexural rigidity is presented in Figures 6 and 7 at µ = 0.5 and µ = 0.2, respectively. 

According to the results presented in Figure 3 the loading capacity drop is symmet-

rical but when the reduction of coefficient of flexural rigidity is investigated 

the drop becomes unsymmetrical and more rapid. The lowest loading capacity is 

also smaller than it is in the symmetrical case (see Fig. 3). 
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Fig. 6. Influence of the cracks on bifurcation load magnitude at a different bending rigidity 

factor; other data: d
w
 = 0.5, d

z
 = 0.5, µ = 0.5 

 
Fig. 7. Influence of the cracks on bifurcation load magnitude at a different bending rigidity 

factor; other data: d
w
 = 0.5, d

z
 = 0.5, µ = 0.2 

4. Conclusions 

In this paper the geometrically non-linear column used as a slender supporting 

structure has been investigated. The system was loaded by Euler's force. The struc-

ture is composed of two rods in which the cracks are present. In the simulations of 

cracks, the rotational springs have been used. The detailed description of the results 

can be found in Section 3. On the basis of the analysis of the results of numerical 

simulations, the general conclusions are as follows: 

– depending on the crack location, its presence reduces the loading capacity 

of the system in different level, 
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– the size of unaffected by cracks area (part of the cw - cz graph for which the drop 

of loading capacity is smaller than 1%) highly depends on the crack location, 

– the value of bifurcation load changes nonlinearly with respect to the location of 

the crack, 

– the change of loading capacity highly depends on coefficient of flexural rigidity. 

When the non-linear systems are investigated, it can be stated that at higher 

flexural rigidity asymmetry the defect on the stiffer rod will lead to greater reduc-

tion of bifurcation load magnitude than the defect of the less rigid one while with 

small asymmetry, damage to any rod will have a similar influence on load bifurca-

tion. Due to a very complicated problem and a large number of results, the present-

ed plots are only a small sample of data used in structure monitoring. In the future, 

the investigations on dynamic characteristics should be discussed and experimental 

studies should be done in order to verify the correctness of the proposed mathemat-

ical models. 
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