O-SPECIES AND TENSOR ALGEBRAS

Nadiya Gubareni
Institute of Mathematics, Czestochowa University of Technology
Częstochowa, Poland
nadiya.gubareni@yahoo.com

Abstract. In this paper we consider O-species and their representations. These O-species are a type of a generalization of a species introduced by Gabriel. We also consider the tensor algebras of such O-species. It is proved that the category of all representations of an O-species and the category of all right modules over the corresponding tensor algebra are naturally equivalent.

Keywords: species, O-species, representations of O-species, tensor algebra, O-species of bounded representation type, diagram of O-species

1. Introduction

In this paper we consider O-species, which generalize the notion of species introduced by Gabriel in [1]. Recall this definition:

Definition 1.1. (Gabriel [1]). Let I be a finite index set. A species $L = (F_i, M_{ij})_{i,j \in I}$ is a finite family $(F_i)_{i \in I}$ of division rings together with a family $(M_{ij})_{i,j \in I}$ of (F_i, F_j)-bimodules.

We say that $(F_i, M_{ij})_{i,j \in I}$ is a K-species if all F_i are finite dimensional and central over the common commutative subfield K which acts centrally on M_{ij}, i.e. $\lambda m = m \lambda$ for all $\lambda \in K$ and all $m \in M_{ij}$. We also assume that each bimodule M_{ij} is a finite dimensional vector space over K. K-species is a K-quiver if $F_i = K$ for each i.

Definition 1.2. A representation (V, φ) of a species $L = (F_i, M_{ij})_{i,j \in I}$ (or an L-representation) is a family of right F_i-modules V_i and F_i-linear mappings:

$$ j \varphi : V_i \otimes_{F_i} M_{ij} \to V_j $$

for each $i, j \in I$. Such a representation is called finite dimensional, provided all the spaces V_i are finite dimensional vector spaces.
Let \(V = (V_i, \phi_i) \) and \(W = (W_i, \psi_i) \) be two \(L \)-representations. An \(L \)-morphism \(\Psi: V \to W \) is a set of \(F_i \)-linear maps \(\alpha: V_i \to W_i \) such that

\[
_j \psi_i (\alpha_i \otimes 1) = \alpha_{j,j} \phi_i \tag{1.4}
\]

Two representations \((V_i, \phi_i) \) and \(W = (W_i, \psi_i) \) are called **equivalent** if there is a set of isomorphisms \(\alpha_i \) from the \(F_i \)-module \(V_i \) to the \(F_i \)-module \(W_i \) such that the (1.4) holds for all \(i,j \in I \).

A representation \((V_i, \phi_i) \) is called **indecomposable**, if there are no non-zero sets of subspaces \((U_i) \) and \((W_i) \) such that \(V_i = U_i \oplus W_i \) and \(j \phi_i = j \psi_i \oplus j \tau_i \), where

\[
j \psi_i: U_i \otimes_{F_i} M_j \to U_j \tag{1.5}
\]

\[
j \tau_i: W_i \otimes_{F_i} M_j \to W_j \tag{1.6}
\]

One defines the direct sum of two \(L \)-representations in the obvious way.

Denote by \(\text{Rep}(L) \) the category of all \(L \)-representations, and by \(\text{rep}(L) \) the category of finite dimensional \(L \)-representations, whose objects are \(L \)-representations and whose morphisms are as defined above.

Definition 1.7. [2] A species \(L = (F_i, M_j)_{i,j \in I} \) is said to be of **finite type**, if the number of indecomposable non-isomorphic finite dimensional representations is finite.

A species \(L = (F_i, M_j)_{i,j \in I} \) is said to be of **strongly unbounded type** if it possesses the following three properties:

1. \(L \) has indecomposable objects of arbitrary large finite dimension.
2. If \(L \) contains a finite dimensional object with an infinite endomorphism ring, then there is an infinite number of (finite) dimensions \(d \) such that, for each \(d \), the species \(L \) has infinitely many (non-isomorphic) indecomposable objects of dimension \(d \).
3. \(L \) has indecomposable objects of infinite dimension.

Dlab and Ringel proved in [2, Theorem E] that any \(K \)-species is either of finite or of strongly unbounded type.

With any species \(L = (F_i, M_j)_{i,j \in I} \) one can define the tensor algebra in the following way. Let \(B = \prod_{i \in I} F_i \), and let \(M = \bigoplus_{i,j \in I} M_j \). Then \(B \) is a ring and \(M \) naturally becomes a \((B, B)\)-bimodule. The **tensor algebra** of the \((B, B)\)-bimodule \(M \) is the graded ring
with component-wise addition and the multiplication induced by taking tensor products.

If \(L \) is a \(K \)-species, then \(T(L) \) is a finite dimensional \(K \)-algebra.

Theorem 1.9. (Dlab, Ringel [2, Proposition 10.1]). Let \(L \) be a \(K \)-species. Then the category \(\text{Rep}(L) \) of all representations of \(L \) and the category \(\text{Mod}_r(T(L)) \) of all right \(T(L) \)-modules are equivalent.

2. \(O \)-species and their representations

In this section we consider the notion of \(O \)-species, which generalizes the notion of species considered in [1].

Let \(\{O_i\} \) be a family of discrete valuation rings (not necessarily commutative) \(O_i \) with radicals \(R_i \) and skew fields of fractions \(D_i \), for \(i = 1, 2, \ldots, k \), and let \(\{D_j\} \), for \(j = k + 1, \ldots, n \), be a family of skew fields. Let \((n_1, n_2, \ldots, n_k)\) be a set of natural numbers. Write

\[
\begin{bmatrix}
O_1 & O_1 & \cdots & O_1 \\
R_1 & O_1 & \cdots & O_1 \\
\vdots & \vdots & \ddots & \vdots \\
R_1 & R_1 & \cdots & O_1
\end{bmatrix},
\]

which is a subring in the matrix ring \(M_{n_i}(D_i) \). It is easy to see that each \(H_{n_i}(O_i) \) is a Noetherian serial prime hereditary ring. Write \(F_i = H_{n_i}(O_i) \) for \(i = 1, 2, \ldots, k \), and \(F_j = D_j \) for \(j = k + 1, \ldots, n \). Then, by the Goldie theorem, there exists a classical ring of fractions \(\tilde{F}_i \) for \(i = 1, 2, \ldots, n \).

Consider the following generalization of a species.

Definition 2.1. An \(O \)-species is a set \(\Omega = (F_i, M_i)_{i,j \in I} \), where \(F_i = H_{n_i}(O_i) \) for \(i = 1, 2, \ldots, k \), and \(F_j = D_j \) for \(j = k + 1, \ldots, n \), and moreover \(M_i \) is an \((\tilde{F}_i, \tilde{F}_j) \)-bimodule, which is finite dimensional as a right \(D_j \)-vector space and as a left \(D_i \)-vector space.

An \(O \)-species \(\Omega \) is called a \((D, O) \)-species if all \(O \) have a common skew field of fractions \(D \), i.e. all \(D_i \) are equal to a fixed skew field \(D \) and
for some natural number $n_i (i = 1, 2, ..., n)$.

An O-species Ω is called a (K, O)-species, if all $D_i (i = 1, 2, ..., n)$ contain a common central subfield K of finite index in such a way that $\lambda m = m \lambda$ for all $\lambda \in K$ and all $m \in M_i$ (moreover, each bimodule M_i is a finite dimensional vector space over K). It is a (K, O)-quiver if moreover $D_i = D$ for each i.

Everywhere in this paper we will consider O-species without oriented cycles and loops, i.e. we will assume that $M_i = 0$, and if $M_i \neq 0$, then $M_i = 0$. A vertex i is said to be marked if $F_i = H_{n_i} (O_i)$.

We will also assume that all marked vertices are minimal, i.e. $M_i = 0$ if $F_i = H_{n_i} (O_i)$, and that $M_j = 0$ if i, j are marked vertices.

Definition 2.3. The *diagram* of an O-species $\Omega = \{F_i, M_{ij}\}_{i,j \in I}$ is defined in the following way:

1. The set of vertices is a finite set $I = \{1, 2, ..., n\}$.
2. The finite subset $I_0 = \{1, 2, ..., k\}$ of I is a set of marked points.
3. The vertex i connects with the vertex j by t_{ij} arrows, where

$$t_{ij} = \frac{1}{n_i} \dim_D (M_j) \times \dim_i (M_j),$$

moreover, we assume that $n_i = 1$ if $F_i = D_i$.

Similar to species we can define representations of O-species in the following way.

Definition 2.4. A representation $(M_i, V_{ir}, \phi_{ir}, \psi_{ir})$ of an O-species $\Omega = \{F_i, M_{ij}\}_{i,j \in I}$ is a family of right F_i-modules $M_i (i = 1, 2, ..., n)$ and D_j-linear maps:

$$\phi_{ir} : M_j \otimes_{D_j} M_i \rightarrow V_j$$

for each $i = 1, 2, ..., n$; $j = 1, 2, ..., n$; and

$$\psi_{ir} : V_r \otimes_{D_r} M_j \rightarrow V_j$$

for each $r = 1, 2, ..., n$.

Definition 2.5. Two representations $M = (M_i, V_{ir}, \phi_{ir}, \psi_{ir})$ and $M' = (M'_i, V'_{ir}, \phi'_{ir}, \psi'_{ir})$ are called equivalent if there is a set of isomorphisms α_i of F_i-modules from M_i to
M'_r and a set of isomorphisms β_r of D_r-vector spaces from V_r to V'_r such that for each $i = 1, 2, ..., k; r, j = k + 1, k + 2, ..., n$ the following equalities hold:

$$j\varphi'_r(\alpha \otimes 1) = \beta_{j', j} \varphi_i$$

(2.6)

$$j\psi'_r(\beta_r \otimes 1) = \beta_{j', j} \psi_r$$

(2.7)

In a natural way one can define the notions of a direct sum of representations and of an indecomposable representation.

The set of all representations of an O-species $\Omega = (F_i, M_j)_{i,j}$ can be turned into a category $\mathcal{R}(\Omega)$, whose objects are representations $M = (M_i, V_r, \varphi_i, \psi_r)$, and a morphism from object $M = (M_i, V_r, \varphi_i, \psi_r)$ to object $M' = (M'_i, V'_r, \varphi'_i, \psi'_r)$ is a set of homomorphisms α_i of $H_{n_i}(O_i)$-modules M_i to M'_i, and a set of homomorphisms β_r of D_r-vector spaces from V_r to V'_r such that for each $i = 1, 2, ..., k; r, j = k + 1, k + 2, ..., n$ the equalities (2.6) and (2.7) hold.

3. Tensor algebra of O-species

For any O-species $\Omega = (F_i, M_j)_{i,j}$ one can construct a tensor algebra of bimodules $T(\Omega)$. Let $A = \bigoplus_{i=1}^q F_i$, $B = \bigoplus_{i,j} M_{ij}$. Then B is an (A, A)-bimodule and we can define a tensor algebra $T_A(B)$ of the bimodule B over the ring A in the following way:

$$T_A(B) = A \oplus B \oplus B^2 \oplus ... \oplus B^n \oplus ...$$

(3.1)

is a graded ring, where $B^n = B \otimes_A B^{n-1}$ for $n > 1$, and multiplication in $T_A(B)$ is given by the natural A-bilinear map:

$$B^n \times B^m \to B^n \otimes_A B^m = B^{n+m}$$

(3.2)

Then $T(\Omega) = T_A(B)$ is the tensor algebra corresponding to an O-species Ω.

Proposition 3.3. Let Ω be an O-species. Then the category $\mathcal{R}(\Omega)$ of all representations of Ω and the category $\text{Mod}_T(\Omega)$ of all right $T(\Omega)$-modules are naturally equivalent.

Proof. Form two functors $R: \text{Mod}_T(\Omega) \to \mathcal{R}(\Omega)$ and $P: \mathcal{R}(\Omega) \to \text{Mod}_T(\Omega)$ in the following way. Let $X_T(\Omega)$ be a right $T(\Omega)$-module. Since A is a subring in $T(\Omega)$, X can be considered as a right A-module. Then
where M_i is an $H_{n_j}(O_i)$-module, and V_r is a D_r-vector space; moreover, $M_iH_{n_j}(O_j) = 0$ for $i \neq j$, and $V_iD_j = 0$ for $r \neq s$. Since B is an (A, A)-bimodule, one can define an A-homomorphism $\varphi : X \otimes_A B \to X_A$. Taking into account that $M_i \otimes_A M_j = 0$ for $i \neq s$, the map φ is defined in the following way:

$$\varphi : \left(\bigoplus_{i=1}^{k} (M_i \otimes_A M_j) \right) \otimes \left(\bigoplus_{r=k+1}^{n} (V_r \otimes_A M_j) \right) \to \bigoplus_{r=k+1}^{n} V_r$$

(3.5)

Since $M_i \otimes_A M_j$ is mapping into V_j, and $V_r \otimes_A M_j$ is mapping into V_j, φ defines a set of D_r-homomorphisms:

$$\varphi_i : M_i \otimes_A M_j = M_i \otimes H_{n_j}(O_j) M_j \to V_j$$

(3.6)

$$\varphi_r : V_r \otimes_A M_j = V_r \otimes D_r M_j \to V_j$$

(3.7)

for $i = 1, 2, ..., k; r, j = k + 1, ..., n$.

Now one can define $R(X_{\Omega}) = (M_i, V_r, \varphi_i, \psi_r)$. Let X, Y be two right $T(\Omega)$-modules, let $\alpha : X \to Y$ be a homomorphism, and let $R(X) = (M_i, V_r, \varphi_i, \psi_r), R(Y) = (N_i, W_r, \bar{\varphi}_i, \bar{\psi}_r)$. Let's define a morphism from $R(X)$ to $R(Y)$. Since α is an A-homomorphism, $\alpha(M_i) \subseteq N_i$, $\alpha(V_r) \subseteq W_r$, i.e., α defines a family of $H_{n_i}(O_i)$-homomorphisms $\alpha_i : M_i \to N_i$ and a family of D_r-homomorphisms $\beta_r : V_r \to W_r$, which are the restrictions of α to M_i and V_r. Therefore one can set $R(\alpha) = \{(\alpha_i), (\beta_r)\}$. Since α is a $T(\Omega)$-homomorphism,

$$\varphi_i (\alpha_i \otimes 1) = \alpha_{i,j} \varphi_i$$

(3.8)

and

$$\varphi_r (\beta_r \otimes 1) = \beta_{j,r} \psi_r$$

(3.9)

for $i = 1, 2, ..., k; r, j = k + 1, ..., n$. Therefore $R(\alpha)$ is a morphism in the category $R(\Omega)$.

Conversely, let $\Omega = (F_n, \rho)$ and there is given a representation $M = (M_i, V_r, \varphi_i, \psi_r)$. Then one can define $P(M)$ in the following way:

$$P(M) = X = \left(\bigoplus_{i=1}^{k} M_i \right) \oplus \left(\bigoplus_{r=k+1}^{n} V_r \right)$$

(3.10)
We define an action of
\[A = \left(\bigoplus_{i=1}^{k} H_{n_i}(O_i) \right) \bigoplus \left(\bigoplus_{r=k+1}^{n} D_r \right) \] (3.11)
on \(M_i \) by means of the projection \(A \to H_{n_i}(O_i) \) and an action of \(A \) on \(V_r \) by means of the projection \(A \to D_r \). We define an action of \(B^n \) on \(X \) by induction of \(\phi^{(n)} : X \otimes_A B^n \to X \) as follows:
\[\phi^{(1)} = \bigoplus_{i,j} \phi_{i,j} \otimes \psi_{r} : X \otimes_A B = \left(\bigoplus_{i=1}^{k} (M_i \otimes_A M_j) \right) \bigoplus \left(\bigoplus_{r=k+1}^{n} (V_r \otimes_A M_j) \right) = \left(\bigoplus_{i=1}^{k} (M_i \otimes_{H_{n_i}(O_i)} M_j) \right) \bigoplus \left(\bigoplus_{r=k+1}^{n} (V_r \otimes_{D_r} M_j) \right) \to \bigoplus_{r=k+1}^{n} V_r \subseteq X. \]
\[\phi^{(n+1)} = \phi(\phi^{(n)} \otimes 1) : X \otimes_A B^{(n+1)} = (X \otimes_A B) \otimes_A B^n \xrightarrow{\phi^{(n)} \otimes 1} X \otimes_A B \xrightarrow{\phi} X \]
If \(\alpha = \{ \{ \alpha_i \}, \{ \beta_r \} \} \) is a morphism of a representation \(M = (M_i, V_r, \psi_{ \alpha_i}, \psi_{ \beta_r}) \) to a representation \(M' = (M_i', V_r', \psi_{ \alpha_i}', \psi_{ \beta_r}') \), then
\[\varphi = \bigoplus_i \alpha_i \bigoplus_r \beta_r : X = \bigoplus_i M_i \bigoplus_r V_r \to \bigoplus_i M_i' \bigoplus_r V_r' \] (3.12)
is a \(T(\Omega) \)-homomorphism and therefore \(P(\alpha) = \varphi \).

It is not difficult to show that \(R, P \) are mutually inverse functors and they give an equivalence of categories \(\text{Mod} \, T(\Omega) \) and \(\mathcal{R}(\Omega) \).

Recall that an Artinian ring \(A \) is of finite representation type if \(A \) has only a finite number of indecomposable finitely generated right \(A \)-modules up to isomorphism.

A ring \(A \) is of (right) bounded representation type (see [3, 4]) if there is an upper bound on the number of generators required for indecomposable finitely presented right \(A \)-modules.

Denote by \(\mu(M_i) \) the minimal number of generators of an \(H_{n_i}(O_i) \)-module \(M_i \), and denote by \(d_r = \dim_{D_r}(V_r) \) the dimension of vector space \(V_r \) over \(D_r \). The dimension of a representation \(M = (M_i, V_r, \psi_{ \alpha_i}, \psi_{ \beta_r}) \) is the number
\[d = \dim M = \sum_{i=1}^{n} \mu(M_i) + \sum_{r=k+1}^{n} d_r \] (3.13)
Definition 3.14. An O-species Ω is said to be of \textbf{bounded representation type} if the dimensions of its indecomposable finite dimensional representations have an upper bound.

Corollary 3.15. An O-species Ω is of bounded representation type if and only if the tensor algebra $T(\Omega)$ is of bounded representation type.

\textit{Proof.} If Ω is an O-species of bounded representation type, then there exists $N > 0$ such that $\dim M < N$ for any indecomposable finite dimensional representation M. Then for any finitely generated $T(\Omega)$-module X we have $\mu(X) < N_1$, where N_1 is some fixed number depending on N, i.e. $T(\Omega)$ is a ring of bounded representation type. The converse also holds: if $T(\Omega)$ is a ring of bounded representation type, then Ω is an O-species of bounded representation type.

Corollary 3.16. Let Ω_1 be a D-species, which is a subspecies of a (D, O)-species Ω. If Ω is of bounded representation type, then Ω_1 is of finite type.

\textit{Proof.} Since Ω is of bounded representation type, each of its subspecies is of bounded representation type as well. So Ω_1 is of bounded representation type, and, by corollary 3.15, its tensor algebra is of bounded representation type, as well. Since Ω_1 is a D-species, its tensor algebra is an Artinian ring. So it is of finite representation type, by [5]. Therefore, Ω_1 is also of finite representation type.

3. Conclusion

In this paper we introduced O-species and the tensor algebras corresponding to them. These O-species are some generalizations of species first introduced by Gabriel in [1]. We consider the notion of a representation of an O-species. In this paper we prove that the category of all representations of O-species Ω and the category of all right modules over a tensor algebra $T(\Omega)$ are naturally equivalent.

References