
Journal of Applied Mathematics and Computational Mechanics 2015, 14(3), 127-139

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2015.3.14 e-ISSN 2353-0588

TIMED MODELS OF SECURITY PROTOCOLS INCLUDING

DELAYS IN THE NETWORK

Sabina Szymoniak
1
, Mirosław Kurkowski

 2
, Jacek Piątkowski

1

1Institute of Computer and Information Sciences, Czestochowa University of Technology
Częstochowa, Poland

2Institute of Computer Science, Cardinal Stefan Wyszynski University
Warszawa, Polska

1sabina.szymoniak@icis.pcz.pl, 1m.kurkowski@uksw.edu.pl, 2jacek.piatkowski@icis.pcz.pl

Abstract. A very important part of the network and computer systems is to ensure an

appropriate level of information transmission security. Security is based primarily on

properly selected communication in security protocol. Unfortunately, the time-dependent

protocols are vulnerable to attacks; therefore there is a need to verify these protocols. For

verification purposes, protocols can be modeled using timed automata. During the modeling

and verification of the protocols, one should also keep in mind delays in the network. So

far, delays in the network were not modeled.

Keywords: computer science, mathematical models

1. Introduction

Assurance of an appropriate level of information transmission security is a very

important part of the network and computer systems. Security is based primarily on

properly selected communication in security protocol. Commonly are used encryp-

tion and random numbers (nonce) which are intended to identify positively consec-

utive communication sessions. However, when the protocol continues after the

break in time, we cannot assume that the key used to encrypt the message has

already been broken. There is a possibility to make the so-called re-play attack in

which the Intruder uses the old ciphertext. In order to confirm the time to send

a message, timestamps are used. This allows to reject these communication ses-

sions which have a very long duration and thus avoiding attacks [1].

One of the protocols that uses the timestamps is the symmetric Wide Mouth

Frog protocol. This protocol aims to establish a new session key. Session keys are

used to encrypt information during a single session. The Wide Mouth Frog proto-

col has a very simple structure. It occurs in two users (labeled as A and B) and

S. Szymoniak, M. Kurkowski, J. Piątkowski 128

so-called trusted server (labeled as S). The server mediates the exchange of the

session key between A and B, and in the mutual authentication of users. Wide

Mouth Frog design consists of two steps. In the first step, A sends a request to the

server to communicate with B with the corresponding timestamp. The server after

verification of the user sends an appropriate message to B which will help him

connect with A. Of course, each message is encrypted with symmetric key shared

between the user sending the message and the server [2].

It is worth noting that the very design of correct protocols is a very difficult

task. The given protocol may be susceptible to even the simplest attacks. Therefore

there is a need to verify the modeling operations and security protocols. In model-

ing, the user's knowledge about keys or nonces that the user acquires during the

protocols execution plays a very important role. Formal verification of protocols

uses the formal description of the protocol in the specification language. However,

during the verification of time-dependent protocols, one should take into considera-

tion the appropriate conditions of the generation of the new time items or run-time

protocol.

The main methods of verification are: simulations, and the formal modeling

and verification. The simulations are based on actual testing systems or the simula-

tions performed on the operation of these systems using virtual machines. The

second method involves the construction of special mathematical structures that

describe the executions of all actions in the study protocol defined space [1].

The formal methods can be replaced with the inductive methods [3], deductive

methods [4] and model checking [5]. The first method uses mathematical induction

to prove the fulfillment of certain properties by the protocol. The deductive method

requires constructing a deductive system (logic) However, formal mathematical

models of appropriate transitions systems are created into the model checking of

the study of the protocol executions [6]. So far, there were several established tools

for security protocols verification. The proper models are searched by specialized

tools like TPMC [7], AVISPA [8] or Scyther [9].

The formal mathematical models can be built using the so-called timed automa-

ta. Then, the time needed both to generate and send the whole message of that

news as well as network delays can be modeled. These delays are related to the

transition time of a message between the sender and the recipient (the network

links [6]). So far, during the modeling and verification of security protocols, delays

in the network were not modeled. This problem is mainly very important from

a practical point of view. People forming network infrastructure need such verifica-

tion report to check for proper operation and susceptibility to attack before the

launch.

The paper will present a new approach to the problem of modeling of execu-

tions security protocols in relation to the method described in papers [10, 11].

In our approach, interlaces of protocols executions will be considered.

Timed models of security protocols including delays in the network 129

2. Computing structure

To define a model of time-dependent security protocol including delays in the

network, corresponding structures, in which an Intruder will also appear, is neces-

sary. Due to their presence, it is possible to consider the real executions of protocol

in a real network. Definition sets of the basic structures objects are as follows:

Definition 2.1. Let:

• � = {p�, , p�, … , p��} is a set of honest users in computer network,

• �� = {�, �����, �����, … , � �����	is a set representing Intruder � and Intruder
who impersonates honest users �� 		
�	1	 ≤ �	 ≤ 	
�,

• � = {���, … , ���� ,, ��}	be set of network user identifiers,
• � = ⋃ {���,,���	�}

��
�
� ∪ (⋃ ⋃ ���������

�
� \⋃ ���������
�
�

��
�
�)	is a set of users

cryptographic keys (symmetric and asymmetric),

• � = ⋃ �
��� , …
����� ∪ {
�	� , …
�	��}
��
�
� 	is a set of pseudo-random numbers

(nonces),

• � = 	⋃ ����� , … ����
� ∪ {��	� , … ��	�
}
��
�
� is a set of users timestamps,

• � = {��, ��, … , ���} ⊆ �
 is a set of positive real numbers representing the
tickets' validity periods of time - lifetimes,

• � = {��,��, … , ���} ⊆ �∗ is a set of non-negative real numbers represent-

ing delays in the network.

Numbers
� ,�� are fixed natural numbers. To simplify the discussion, the
assumption was accepted that each participant of the protocol may generate the

same number of nonces. Algebra of terms, which allows one to create definitions

messages with the relationship between them, is as follows.

Definition 2.2. The set of the letters � let be the smallest set satisfying the follow-
ing conditions:

• � ∪ �� ∪ � ∪ � ∪ � ∪ � ∪ � ∪ ∆	⊆ �,
• If	 ,! ∈ �, then concatenation ∙ ! ∈ � ,
• If ∈ � and � ∈ �, then 〈 〉� ∈ �, where 〈 〉� is cryptogram which con-

tains letter x and have been encrypted by key k,

• If ∈ �, then ℎ() ∈ �, where ℎ() is the value of the hash function on the
letter x.

The auxiliary relationship on the set of L is as follows.

Definition 2.3. Relation of direct subletter ≺∙	⊆ � × � let be the smallest relation
satisfying the following conditions:

1. If , ! ∈ �, then ≺∙ 	 ∙ ! and ! ≺∙ 	 ∙ !,
2. If ∈ � and � ∈ �, then ≺∙ 	 〈 〉�	, and � ≺∙ 	 〈 〉�,
3. If ∈ �, then ≺∙ 	ℎ().

S. Szymoniak, M. Kurkowski, J. Piątkowski 130

≼	means marked feedback and passers closure of ≺∙relation. For any set of
letters X ⊆ �, the sequence of sets ($�)�∈� will be defined, as well as subsets of L,
where:

• $� ≝ $,
• $�
� ≝ $� ∪ %& ∈ �	|�∃ ,! ∈ $� ,� ∈ $ ∩ ��	& = ∙ ! ∨ & = 〈 〉� ∨ & =

= ℎ()}.
A set $�
� contains letters built inductively because of encryption, concatena-

tion and hash functions that may arise from $�.
Then set (
)�($) ≝ ⋃ $��∈� is a set of letters which can be created from the

letter of set X. The set of all subletters from X letters of the subletter relationship is

as follows: *+,�-��$� ≝ %� ∈ �	|	�∃ ∈ $�	�	 ≼ }.

In further considerations it is necessary to introduce an Intruder which, depend-

ing on their powers, will want to deceive others, fair participants, by sending the

letters which often will not adhere to the idea of the protocol. The Intruder can

compose letters depending on the knowledge. The expression of the Intruder's

acquired knowledge depending on already possessed knowledge and information

captured from the network is as follows.

Definition 2.4. Let $ ⊆ �	.
/	0 ⊆ �. The set of	1��$� ⊆ � let be the smallest set
that satisfies the following conditions:

1. $	 ⊆ 1��$�,
2. If	� ∙) ∈ 1��$�, then � ∈ 1��$� and) ∈ 1��$�,
3. If	〈�〉� ∈ 1��$� and � ∈ 1��$� ∪ 0, then	� ∈ 1��$�.
Set of 1��$�	contains all the letters which can be obtained from the set of letters

X by concatenations decomposition and decryption with keys belonging to the set 1��$� or K. For further considerations, by a set of 1��$� set of 1∅�$� will be
denoted.

For the purposes of this article, the protocol will be treated as an algorithm

which is an abstract concept. In order to consider the various executions of one

protocol and their floats, it is necessary to define formal executions. An execution

of the protocol, at a given time, is determined by using parameters therein, such as

users, keys, nonces, timestamps but also the time associated with delays occurring

in the networks.

For the definition of the protocols executions, two types of functions mapping

a set of terms T in a set of letters L are necessary. Two types of functions are:

interpretations and partial interpretations.

Definition 2.5. Partial interpretation of a set of terms of letters T let be any injec-

tive function 	:	2 → �	satisfying the following conditions:
1. 	�3�� ⊆ 4 ∪ 	��,	�3�� ⊆ �,	�3�� ⊆ �,	�3�� ⊆ �,	�3�� ⊆ 	�,	�3�� ⊆�,	�3�� ⊆ �,			

Timed models of security protocols including delays in the network 131

2. �∀$,5 ∈ 3�		�$ ∙ 5� = 	 	�$� ∙ 	 	�5�	(homomorphism),
3. �∀$ ∈ 3�	�∀� ∈ 3��	�〈$〉�� = 	 〈	($)〉�(�) (homomorphism),
4. �∀$ ∈ 3�		�ℎ($)� = ℎ(($))		(homomorphism),
5. If		�6� = �		
�	� ∈ �, then		�7�� = ��,	�8�� ∈ 	 �
�� , … ,
�����, 		�0�� =	= 	 ��,	�0�	�� = 0�	�	.
/		�9�� 	∈ {���, … , ���
},

6. If		�6� = �, then		�7�� = �� , 		�0�� = 	 ��,	�0�	�� = 0�	�,
7. If		�6� = �(�), then		�7�� = ��, 		�0�� = 	 ��,	�0�	�� = 0�	�,
8. 		�3��\��	 ≠ 	∅.
Partial interpretations specify all the parameters of the executions of the proto-

col apart from the aspects of time. Partial interpretation therefore determines the set

of protocols executions which differ in execution time, but are realized with the

same parameters at different times. Whereas, the interpretation designates a specif-

ic execution of the protocol.

Definition 2.6. For a fixed partial interpretation of the 	 interpretation induced by 	, a set of terms of letter T and a set of real variables 3� will be referred to any
injective	function 	:3 ∪ 3� → � ∪ �∗ ,so		|�\�
 = 	 and 	(3� 	∪ 3�) ⊆ �∗	

From the above definition, the timestamps and moments of sending messages

are finally mapped into positive real numbers.

Honest users execute the protocol according to the schema if it is properly con-

structed. However, the Intruder may try to transmit wrong, sometimes intercepted

or modified data. Depending on the chosen model of the Intruder, the data can be

modified in various ways, and the Intruder can construct them with previously

acquired knowledge. In steps, in which the Intruder is a sending party, it is possible

to compose the Intruder's letters with a given set of knowledge.

Definition 2.7. Let � ∈ �	be a letter and $ ⊆ � be set of letters. Set X will be
referred further as a set of letters l generators (which will be determined by $ ⊢ �)
if the following conditions are satisfying:

1. $ ⊆ *+,�-�(%�:),
2. � ∈ (
)�($),
3. (∀) ∈ $)() ∉ (
)�(${)})),
4. (∀) ∈ $)(� ∉ (
)�(${)})).

A set X is a set of letter l generators �$ ⊢ �� if all elements of X are subletters of
l, l may be composed of elements of the set X, and X is the minimal set satisfying

this property.

Temporal conditions are defined in set C. Induction definition of their interpre-

tation is as follows:

• 	(��+-) ∶= 	��+-,
• 	;9� + � − 9� 	≤ <�= ≔ 		�9�� + 		��� − 	;<�= ≤ 	;<�=,
• 	�>?� ∧ >?�� ≔ 	�>?�� ∧ 	�>?��	.

S. Szymoniak, M. Kurkowski, J. Piątkowski 132

A defined set of letters generators and interpretations on the set T can be used to

define a step in time-dependent protocol and also the whole time-dependent

protocol.

Definition 2.8. Consider the following step: @ = �@�,@�� = ;�6,A, <�, �9� ,�� ,$,B, CD�=	
of the given time-dependent protocol Σ and interpretation f on the set 3 ∪ 3� which
satisfies the following ⋀ (�9�� = 	(9))�∈�∩�
 . This condition indicates that the

period of timestamp is identical to the time sending messages with that step proto-

col. By f-interpretation of step @ (denoted by 	(@)) the following tuple will be
denoted:

• �;	�6�,	�A�,	�<�=, ;	�9��,	����,	�$�,	�B�,	�>?�=� , �			(6) ∈ �,
• ;�	�6�,	�A�,	(<)�, �	�9��,	����, %$ ⊢ 	�<�:, ∅,	(>?)�=, �			(6) ∈ ��
In a situation where the Intruder is a sending party, there is the assumption that

they can compose the letter f(L) of each set which generates the letter f(L). It is also

assumed that the Intruder previously may have generated its own set of nonces,

keys, and timestamps. The above assumption is not a constraint considerations

because the Intruder does not need to perform their activities, including generating

confidential information in accordance with the idea of the protocol and they may

use sensitive data repeatedly in various applications (sessions) of the protocol.

To determine the execution of the protocol and the knowledge of users, includ-

ing the Intruder, the secondary concepts and notations must be introduced which

will be helpful in defining and recording further structure and dependencies.

Let 	(@�) = ;��,F, ��, ��,/,$,B, >?�= for some �,F ∈ � ∪ ��,G ∈ 2���
� ,B ∈

∈ 2���
�∪ ,.
/	�	 ∈ � be:
Let:

• *-
/�(��) = � – sender in step 	(@�),
• <-���(��) = � – letter in step 	(@�),
• B-
�(��) = B – a set of new confidential data generated in step	(@�),
• �-H��(��) = F – recipient of letter in 	(@�),
• 6.���(��) = {*-
/�!��",�-H��(��)} ,
• 3�)-�(��) = �,
• I-�.!�(��) = / – delay in the network in step 	(@�),
• 3(

H���(��) = >?	– time for step 	(@�).

If the sender is honest, that meaning: *-
/�(��) ∈ �, then let (
)��(��) = $	be
a set of letters, all of which compose the letter <-���(��). However, if the sender is
an Intruder, that meaning: *-
/�(��) ∈ �#, then let (
)��(��) = ⋃$ ⊆ <	|	$ ⊢<-���(��)}	be the sum of all the sets of letters generators <-���(��).

Similarly, for the partial interpretation 		of interpretation f, a similar notation is
used: *-
/�(��), <-���(��),B-
�(��),�-H��(��)	respectively

Timed models of security protocols including delays in the network 133

for 	�6�,	�<�,	�B�,	�A�. These structures allow the formal definition of both the
individual steps and of the whole protocol.

Definition 2.9. Let f be interpretation satisfying the following conditions:

• 	�@��,	(@�), … ,	(@�) are f-interpretation of protocols steps,

• ⋀ 3(

H��(��) ≡ ��+-�
�
� .

By f-execution of protocol Σ, a course 	�J� = 	�@��,	�@��, … , 	�@��	will be
understood.

Example 2.1. Consider the Wide Mouth Frog (WMF) protocol and interpretation f

where 	�K� = .,	�L� = ,, 	�*� = H,	;<�= = �,.
/		�9�� = �� . From definition
2.5 of this interpretation, the results are as follows:		�7$� = �% ,	�9$� =�% ,	�9&� = �',	�0$&� = �%', 	�0$(� = �%) 	and		�0(&� = �)'. The next steps of
f-interpretation of WMF protocol are following:

1. 	�@�� = 	 �;., H, �% , 〈�% , �) ,�%)〉���=, ;��,/�, %�%, �) , �% ,�%) ,�%':, ��% ,�%),�, �� +

+	/� − �% ≤ �=�,
2. 	�@�� = �;H,,, 〈�', �% ,�%)〉���=, ���,/�, %�% , �',�%) ,�%':, %�':, �� + /� − �% ≤ �	 ∧ �� +

+	/� − �' ≤ ���.
Any interpretation corresponds to a specific execution protocol. Due to consid-

eration of the different interlaces of the various executions of the examined proto-

col, it is necessary to introduce an ancillary structures that allow one to analyze the

set of interpretation and also interlace of executions of steps which make up the

specific executions. First of all, these concepts allow one to express the knowledge

of users participating in the many interlaces of executions of the examined

protocol.

For the considered set of interpretations F set (
)�*�	((
)�*�) of letters will
be defined which the user � ∈ ⋃ 	(3�)\P��∈* (Intruder �) needs in order to create
all the letters that they must create and send in all the steps of executions with

interpretations from the set 	 ∈ M.

Definition 2.10. For honest user p, it is set: (
)�*� = ⋃ ⋃�(
)��!��"	N		 ∈�
�
�M	 ∧ *-
/�!��" = �}. For Intruder	�, it is: (
)�*� = ⋃ ⋃�(
)��!��"	N		 ∈ M	 ∧�

�
�*-
/�!��" ∈ ��}.
Let’s consider any finite set of protocols interpretations consisting of k steps O = (�;@��=,	�;@��=, … ,	�;@��=,). For any � ∈ ⋃ 	�(3�)�

�
� the sequence of the

user's knowledge sets ;P��=�
�,…,� will be defined in the following steps of proto-
cols executions.

S. Szymoniak, M. Kurkowski, J. Piątkowski 134

Definition 2.11. For honest user � ∈ ⋃ 	�3��\���∈* 	,their knowledge in j-step is
defined inductively:

P�� = �	 ∪ ���	�� ∪ ��+	|	F ∈ �� ∪ {��},
P��
� =

QRS
RT P�� �		� ∉ 6.������(%����)

P�� ∪ B-
����(%����) �		� = *-
/����(%����)

(
)�*� ∩ 1,����-(P�� ∪ {<-������(%����)}) �		� = *-
/����(%����).

The user’s knowledge, who does not participate in the protocol step, does not

change. If the user is the initiator of step, their knowledge will be increased by the

generated new set of confidential information. However, if the user is the recipient

of the letter in the step, their knowledge will be increased by all the letters which

can be isolated from the letter obtained in the step. In order to reduce the model,

knowledge is limited only to the above mentioned set (
)�*� - which is the set of
letters which the user needs to compose a list of all versions of a set of steps F

when they are a sending party.

Example 2.2. Let’s consider f-execution of the WMF protocol given in Example

2.1 and following sequence of protocols O = (�@��,	(@�),	(@.)). The sequences

of sets ;P%� =�
�,�,�,.	 and	;P)� =�
�,�,�,. are as follows:
• P%� = {�% , �) , �',�%'	} – initial knowledge of user a,
• P%� = P%� ∪ {�% ,�%)} – knowledge after execution of the first step by

user a (initial knowledge increased by timestamp and key	�%) which
were generated during the first step by a),

• P%� = P%�,
• P)� = {�% , �) , �' ,�)'},	
• P)� = P)�,
• P)� = P)� ∪ {�',�%)}.

Intruder’s knowledge depends on the considered model.

Definition 2.12. Induction definition of Intruder's knowledge limited by Dolev-Yao

model is as follows:

P�� = �	 ∪ %��	�,��: ∪ ��+	|	F ∈ �� ∪ �
��, … ,
���� ∪ {���, … , ���
},

P��
� = U P�� �		�-H�����(%����) ∉ ��(
)�*� ∩ 1,�	��-(P�� ∪ {<-������(%����)}) �		�-H�����(%����) ∈ ��.
If the intruder is not the recipient of steps executions, their knowledge will not

change. On the other hand, when the Intruder is the recipient, they will expand

Timed models of security protocols including delays in the network 135

their knowledge by the original message and by all that can be taken from this let-

ter at the current state of their knowledge (of course, in order to reduce the size of

the model, this knowledge is limited to set (
)�*�).
For simplicity, it is assumed that an Intruder cannot generate nonces according

to the protocols idea. They have previously prepared the appropriate number of

nonces that can be used in each protocols steps executed. The Intruder may also

use the nonces many times in any step of the executions.

Conditions, guaranteeing that the sequence of step interpretation is the calcula-

tion of the protocol in the computing structure, are as:

Definition 2.13. Calculation of the protocol Σ is a finite interpretation of the pro-

tocols steps: V = (�;@��=,	�;@��=, … ,	�;@��=,), which are the following condi-

tions:

1. �∀� ∈ �
�W�� > 1 ⟹ �∃X < ��;	� = 	� ∧ �� = �� − 1=Y,
2. �∀�, X ∈ �
� Z� ≠ X ⟹ B-
��/���0 ∩ B-
��/���0 = ∅[,
3. �∀X ∈ �
� \<-����/���0 ∈ (
)�(P

&1�2
�������

�	�
∪ B-
��/���0)],

4. ∀�
�,…�	�(3�)-��3���4 < 3�)-����3�����4),
5. ∀�
�,…�	3(

H����3���4 = ��+-.

According to the first condition, each step of the protocol (except for the first

step with the partial interpretation 		over the step before) is its predecessor at the
same interpretation. The second condition decrees that nonces sets, generated by

honest users, are disjoint.

The third condition guarantees that letter <-����/���0	(sent in each step) can be
sent by the user *-
/��/���0 only when the user has the appropriate knowledge to
compose this letter. The fourth condition ensures appropriate relationship of time

between successive steps during the executions. The last condition says that all the

time conditions of each step and used interpretation must be satisfied.

3. Timed automata modeling executions of the protocol

For the full modeling of the security protocols, it is necessary to prepare a syn-

chronized network of timed automata which must include two types of this automa-

ta. The first is automata of executions that will represent the next steps of protocols

executions. The second type is automata of knowledge whose task is to present

knowledge of the protocols participants. Automata of executions will be the timed

automata since they have to take into account the time dependencies. In contrast,

automata of knowledge do not contain time dependencies; however, due to the

definition of timed automata, they can be considered as a product of timed automa-

S. Szymoniak, M. Kurkowski, J. Piątkowski 136

ta network. With the proper synchronization between automata of executions and

automata of knowledge, it will be possible to complete the modeling of protocols

executions. Automata of knowledge will not be included in this work.

Let C be set of conditions using integers as X.

Definition 3.1. Timed automaton (abbreviated TA) is following five ^ = (K, <, ��,_,`), where:
• A is a finite set of labels, a K ∩ �∗ = ∅,
• L is a finite set of states,

• �� ∈ < is an initial state,
• ` is a finite set of clocks,

• _ ⊆ < × (× 25 × < is a relation of transition.
Each element e from set E which represents the transition from the location l to

location l’ will be denoted by � %,66,5abbc �′. In this assay, a is executed set; $ ⊆ ` is

a set of reset clocks (zeroed) during executing of action a; ??	 ∈ (are time condi-
tions that have been imposed on executing of action a and transition of e.

The clocks allow one to express the time dependencies between successive

steps of executions and timestamps validity periods.

Along with the relation of transition, the so-called transitions system is related

to; which is responsible for executing actions (transitions between states) with

a time parameters. In this system, the transition is defined as the action and time

successors. The time successors only change the valuation of clocks (the passage of

time). On the other hand, actions successors, which are associated with the execu-

tion of action, may be taken when the time conditions cc are satisfied at an appro-

priate valuation of clocks.

According to the methodology proposed in [4], product of network of timed

automata can be built. The runs of the product of timed automata’s network will be

considering as suitable actions sequences. From all of the runs in the product of

timed automata’s will be constructed the tree. All of transitions from automata’s

components, labeled with the same actions, they will be synchronized with each

other. Other transitions can be executed in any order but the sequence must result

from the automata’s components.

Automata modeling executions of the protocols must be synchronized with the

automata modeling the users' knowledge. With the proper synchronization, the cor-

rect executions tree of the examined protocol can be obtained.

Let’s consider protocol J = �@�, … ,@��	and its partial interpretation 	. All of
the executions 	(J) where f is related to 		are modeled by following automata of
executions K� = (Σ� ,A� , H�� , �̀ ,��) where:

• Σ� = �k�,� 	d1	 ≤ � ≤
	 ⋀ *-
/�(��) ∈ �} ∪ ⋃ ⋃{{��5}|	$ ⊆�
�
�<	⋀	*-
/�!��" ∈ �# 	⋀ $ ⊢ 	<-���!��"},

• A� = {H�� , H�� , H�� , … , H��� } is a set of state where	H�� 	is the initial state,

Timed models of security protocols including delays in the network 137

• �̀ = ⋃ %&7|	� ∈ (� ∩ 	B-
�!��")}�
�
� 	,

•

�� = {�H�	�� ,��,� ,e �3(

H���!��"� , �&7 	N	� ∈ ;� ∩ B-
�!����"=�, 	H��� |	
1 ≤ � ≤
	 ⋀ 	k�,� 	∈ 	Σ�} ∪ {(H�	�� ,��,�5 ,e �3(

H���!��"� , %&7 	|	� ∈ ;� ∩ B-
�!����"=}, 	H��)|	1 ≤ � ≤
	 ⋀ 	��,�5 	∈ 	Σ�}

Defined inductively time conditions	e �3(

H���!��"�	are as follows:
1. e���+-� = ��+-,
2. e;9� + � − 9� 	≤ �= = &7� ≤ �,
3. e�3(

H���⋀3(

H���� = e�3(

H���)	⋀	e(3(

H����.

Each state H�� of automata is reachable after execution of one of the steps
of 	�@�� in execution 	(Σ) for some f associated with 	. In addition, the state H�� can be reachable only when 3(

H���!��" = 	��+- and all clocks 	�&7 	N	� ∈ ;� ∩ B-
�!����"=� are reset.

If the sender of this step is honest, there will be only one way to execute this

step. The sender must have adequate knowledge to compose a letter sent in this

step. However, if the sender is the Intruder, they have a number of opportunities to

execute this step determined by sets of letters generators. Each of these cases is

denoted with another label	��,�5 for different sets of generators of the letter X.

Example 3.1. Automaton of executions for WMF protocol for partial interpretation 	 where 	�K� = .,	�L� = ,, 	�*� = H,	�<*� = �, are as follows:

Fig. 1. Automaton of executions for the WMF protocol

Figure 1 presents the automaton of executions for the Wide Mouth Frog proto-

col. This automaton models a transmission of messages executions of the WMF

protocol according to the f. This automaton cannot be accepted as the full model of

execution because it does not model the user’s knowledge which is necessary to

execute the following steps.

4. Conclusions

The security of information transmission is a very important part of the network

and computer systems. The assurance an adequate level of security is associated

S. Szymoniak, M. Kurkowski, J. Piątkowski 138

with selecting appropriate communications protocol that will protect all communi-

cations. However, computer networks and protocols themselves are exposed to un-

authorized people called the Intruders. Therefore, it was necessary to verify the se-

curity protocols.

This paper presented a formal model of security protocols executions which

takes network delays into account. In this case, the examination of the protocols is

necessary from practical point of view. While creating network infrastructure, such

verification to validate actions and susceptibility for attacks of this infrastructure

should be made before launching the whole infrastructure.

A synchronized network of timed automata have been applied to present

a formal model of security protocols. This model adequately reproduces the real

executions of the protocols in networks. As a result, it is possible to verify the ac-

tions of modeled protocols. Also a tool for automatic verification of protocols is

being created.

In the next studies we will review the timed property of time-dependent proto-

cols that take into account the delay in networks.

Acknowledge

The first author acknowledged a support from the grant BS/MN-1-112/303/15/P

References

[1] Kurkowski M., Penczek W., Applying timed automata to model checking of security protocols,

[in:] Handbook of Finite State Based Models and Applications, J. Wang ed., Chapman and

Hall/CRC Press 2013, 223-254.

[2] Kurkowski M., Grosser A., Piątkowski J., Szymoniak S., ProToc - an universal language for

security protocols specification, Advances in Intelligent Systems and Computing 2015, 342,

237-248.

[3] Paulson L., Proving Properties of Security Protocols by Induction, Proceedings of the IEEE

Computer Security Foundations Workshop X, IEEE Computer Society Press, 1997, 70-83.

[4] Burrows M., Abadi M., Needham R., A Logic of Authentication, Proceedings of the Royal Soci-

ety of London A, 1989, vol. 426, 233-271. A preliminary version appeared as Research Report

39, DEC Systems Research Center, Palo Alto, February 1989.

[5] Dolev D., Yao A., On the security of public key protocols, IEEE Transactions on Information

Theory 1983, 29(2), 198-208.

[6] Kurkowski M., Formalne metody weryfikacji własności protokołów zabezpieczających

w sieciach komputerowych, Wyd. Exit, Warszawa 2013.

[7] Benerecetti M., Cuomo N., Peron A., TPMC: A Model Checker For Time-Sensitive Security

Protocols, Journal of Computers, North America, 2009.

[8] Armando A., Basin D., Boichut Y., Chevalier Y., Compagna L., Cuellar J., Hankes Drielsma P.,

Heám P.C., Kouchnarenko O., Mantovani J., Mödersheim S., von Oheimband D., Rusinowitch

M., Santiago J., Turuani M., Viganó L., Vigneron L., The AVISPA tool for the automated

validation of internet security protocols and applications, Proc. of 17th International Conference

on Computer Aided Verification (CAV’05), vol. 3576 of LNCS, Springer-Verlag, 2005,

281-285.

Timed models of security protocols including delays in the network 139

[9] Cremers C., Feltz M., Operational Semantics and Verification of Security Protocols, Information

Security and Cryptography series, Springer, 2012.

[10] Jakubowska G., Penczek W., Modeling and checking timed authentication security protocols,

Proc. of the Int. Workshop on Concurrency, Specification and Programming (CS\&P'06),

Informatik-Berichte Humboldt University, 2006, 206(2), 280-291.

[11] Jakubowska G., Penczek W., Is your security protocol on time? Proc. of the IPM Int. Symp. on

Fundamentals of Software Engineering (FSEN'07), LNCS, vol. 4767, Springer-Verlag, 2007,

65-80.

[12] Penczek W., Półrola A., Advances in Verification of Time Petri Nets and Timed Automata:

A Temporal Logic Approach,. Studies in Computational Intelligence 20, Springer-Verlag 2006.

