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Abstract. The object of considerations are axially functionally graded (FG) beams, which 

are loaded by an axial force varying along the length of the beam. The main idea presented 

here is to approximate FG beams by an equivalent beam with piecewise exponentially vary-

ing material properties, geometrical properties and axial load. Numerical solutions of the 

buckling analysis are obtained for four various types of boundary conditions associated 

with pinned and clamped ends. The usefulness of the proposed method is confirmed by 

comparing numerical results with those available for graded beams of special polynomial 

non-homogeneity. 
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1. Introduction 

Functionally graded materials represent a class of composites that have a gradu-

ally varying of material and/or geometrical properties in the specified direction. 

A review of researches on functionally graded materials can be found in Suresh 

and Mortensen [1]. In the present contribution the object of investigations are func-

tionally graded (FG) beams. The gradient variation in FG beams may be oriented 

along the cross-section and/or axial direction. 

A list of papers on buckling behaviour of FG beams with thickness-wise gradi-

ent variation is very extensive. For example, in paper [2] by Vo et al. the finite 

element model for vibration and buckling of functionally graded sandwich beams, 

based on a refined shear deformation theory, is presented. Li and Batra [3] derived 

analytical relations between the critical buckling load of a functionally graded 

Timoshenko beam and that of the corresponding homogeneous Euler-Bernoulli beam 

subjected to axial compressive load. Free vibrations, buckling and post-buckling 

of functionally graded beams containing open cracks, by assuming an exponential 

variation of material properties in the thickness direction, were studied by Yang 

and Chen [4]. 



J. Rychlewska 96 

For axially graded beams, stability problems are becoming more complicated 

because of the governing equation with variable coefficients. For example, Singh 

and Li [5] investigated the stability of axially functionally graded tapered beams 

through discretising a non-uniform column into a stepped multi-uniform column 

and solving a transcendental equation to compute the critical buckling load. Free 

vibrations and stability of axially functionally graded tapered Euler-Bernoulli 

beams were studied by Shahba and Rajasekaran [6] by using the differential trans-

form element method. The finite element approach to the free vibration and stabil-

ity analysis of axially functionally graded tapered Timoshenko beams was applied 

by Shahba et al. [7]. A new approach to exactly calculate the critical buckling loads 

of beams with arbitrarily axial inhomogeneity was presented by Huang and Luo 

in [8]. 

In this paper the stability analysis of axially graded beams with a distributed 

axial load is made. Considerations are carried out in the framework of the Euler- 

-Bernoulli beam theory. It is assumed that the changes of material properties as well 

as the axial load are approximated by an exponential form. The obtained solutions 

of the buckling analysis for clamped-clamped, pinned-pinned, clamped-pinned and 

pinned-clamped beams are applied for numerical computations. Critical buckling 

loads are determined from the existence condition of a non-trivial solution in the 

system of algebraic equations obtained here. The proposed approach is based 

on these presented by Kukla and Rychlewska in [9] and Rychlewska in [10]. 

2. Formulation of the problem 

In this paper an axially graded and non-uniform beam of length L (along the x 

direction) is considered. According to the Euler-Bernoulli beam theory, the govern-

ing differential equation for free transverse displacement ( )xw  of axially FG beams 

loaded by an axial force ( )xP  is given by 
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where ( )xI  is the moment of inertia and ( )xE  denotes modulus of elasticity. Intro-

ducing the non-dimensional variable Lx=ξ , we rewrite equation (1) in the follow- 

ing form 
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where we still denote ( )xE , ( )xI , ( )xP  and ( )xw  as ( )ξE , ( )ξI , ( )ξP  and ( )ξw , 

respectively. Next, we assume that 
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PP = . In this contribution we shall approximate 

functions ( )⋅g  and ( )⋅h  by piecewise exponentially functions, setting 
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Hence, we obtain 
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Assuming 
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and introducing denotations 

 
1

1

1

3

1
,

PD

DP

D

LP

i

i

i
== µλ           ni ,...,1=  (8) 

the governing equation for the i-th segment of the beam can be written in the form 
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After some transformations equations (9) can be rewritten as 
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Equations (10) are completed by boundary and continuity conditions. The con-

tinuity conditions have the form 
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In this contribution we consider the following four types of boundary conditions 

(BC): 

– clamped-clamped beam (C-C) 
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– pinned-pinned beam (P-P) 
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– clamped-pinned beam (C-P) 
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– pinned-clamped beam (P-C) 
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3. A solution to the problem 

In this section a solution of the buckling problem (10)-(11) + BC is discussed. 

Under assumption that: 
ii

λµβ <
2

, ni ,...,1= , the general solution of equations (10) 

has the following form 
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where 
2

iii
βλµδ −= , RCCCC

iiii
∈

4321
,,, , ni ,...,1= . Substituting functions (16) 

into one of the set of boundary conditions (12)-(15) and continuity conditions (11), 

we obtain a homogeneous system of 4n linear equations with respect to the 

unknowns RCCCC
iiii
∈

4321
,,, , ni ,...,1= . This system of equations can be written 

in the matrix form 
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rows of the matrix A  represent the boundary conditions at 0=ξ  and the two last 

rows of A  represent the boundary conditions at 1=ξ . The rows of the matrix A  

with non-zero elements 34,14 −− ii
a ,…, 44,14 +− ii

a , 34,4 −ii
a ,…, 44,4 +ii

a , 34,14 −+ ii
a ,…, 

44,14 ++ ii
a , 34,24 −+ ii

a ,…, 44,24 ++ ii
a , 1,...,1 −= ni , are determined by the continuity 

conditions at 
i
ξξ = , 1,...,1 −= ni . For the existence of a non-trivial solution to the 

buckling load problem, it is necessary that the determinant of the matrix A  has to 
 

be equal to zero 

 ( ) 0det =λA  (18) 

In the subsequent section equation (18) is solved numerically with respect to 

dimensionless critical buckling load λ , using an approximate method. 

4. Numerical computations 

In this section some numerical results are presented. The numerical computations 

were carried out for an FG beam with n segments of the same length. Non-dimensio- 

nal critical buckling loads for an FG beam with functions ( ) ( )21 ξξ +=g  and ( ) 1=ξh  

obtained in the present study for 75=n  are listed in Table 1 in comparison with 

those presented in [8] by Huang and Luo. It can be seen that the present results 

are in good agreement with these given in the paper [8]. 

Table 1 

Non-dimensional critical buckling loads of a beam with ( ) ( )21 ξξg += , ( ) 1=ξh  

Boundary 

conditions 
C-C C-P P-C 

Huang and Luo [8] 81.9233636440 42.1091761225 42.1091761216 

Present results 81.9573051028 42.0202358701. 42.0196941905. 
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Next, we take into account functions ( ) ( )21 γξξ +=g  and ( ) ( )ηπξξ sin5.01+=h  

for 5.0;5.0−=γ  and 2;1=η . The effects of parameters γ , η  on the non-dimensio- 

nal critical buckling load for different boundary conditions are presented in Table 2. 

The computations have been provided assuming numbers of beam segments: 5=n ; 

10=n ; 20=n . 

Table 2 

Non-dimensional critical buckling loads of a beam for different boundary conditions, 

( ) ( )21 ξγξg += , ( ) )sin0.51 ξπηξh (+=  

BC η  γ  n = 5 n = 10 n = 20 

C-C 

1 
–0.5 18.0326618862 16.000812014 15.037147626 

0.5 42.3467952861 41.3814908015 40.8418684385 

2 
–0.5 30.9167717114 25.9579817435 23.5869092065 

0.5 67.315838847 63.6530330003 60.9822288428 

P-P 

1 
–0.5 4.44181720275 3.94580897007 3.70934657965 

0.5 10.9508717389 10.7004056583 10.561963588 

2 
–0.5 6.91670862246 5.84577734899 5.31755856644 

0.5 16.854852943 15.7864981399 15.1113705843 

C-P 

1 
–0.5 9.53744854968 8.4654491907 7.9560423312 

0.5 22.4785604313 21.9789821551 21.6978091336 

2 
–0.5 20.6655195425 17.8293864056 16.2839659863 

0.5 49.61145296 48.101957009 46.4246271002 

P-C 

1 
–0.5 9.34726465564 8.30242812168 7.80486693848 

0.5 22.7660844119 22.229522437 21.9376428651 

2 
–0.5 11.8648160278 9.92227510151 9.00715765748 

0.5 27.9845620671 25.945953544 24.7770408754 

 

The non-dimensional critical buckling loads for functions ( ) ( )21 γξξ +=g , 

( ) ( )αγξξ += 1h  for 3;5.2;2;5.1;1=α  and ( )1,0∈γ  are presented in Figure 1. 

The calculations were performed for four types of boundary conditions (12)-(15). 

It can be noticed that variation of parameter γ  has signification effect on the critical 

buckling load. 

For 0→γ  we obtain the case of a homogeneous beam subjected to a constant 

load. In this case the critical buckling load can be exactly calculated and they have 

the following values [11]: 

(1) 4784.39=λ  for clamped-clamped beam; 

(2) 8696.9=λ  for pinned-pinned beam; 

(3) 1907.20=λ  for clamped-pinned or pinned-clamped beam. 
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From Figure 1, it is seen that the obtained results for 0→γ  agree well with these 

presented above. 
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Fig. 1. Non-dimensional critical buckling loads with ( ) ( )21 γξξ +=g , ( ) ( )αγξξ += 1h   

as a function of γ  for 1=α  (black bold line), 5.1=α  (dashed line), 2=α  (dotted line), 

5.2=α  (dotted-dashed line), 3=α  (black solid line) for different boundary conditions 

5. Conclusions 

In this paper a new method, which is capable of computing the buckling loads 

of functionally graded beams in the axial direction subjected to a distributed axial 

load, is presented. The beams under consideration are approximated by another 
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beam with piecewise exponentially varying both geometrical/material properties 

and axial load. The proposed method has been verified with the previous results 

and has found good agreement with them. Numerical results are presented in both 

tabular and graphical forms to show the influence of different material distribution, 

load distribution and boundary conditions on the critical buckling loads of FG 

beams. The effect of these parameters on the buckling behaviour is significant. 
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