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Abstract. We study mechanical-damage avalanches occurring in axially loaded nanopillars 

located in the nodes of the supporting square lattice. Nanopillars are treated as fibres in the 

framework of the stochastic Fibre Bundle Model and they are characterised by random 

strength thresholds. Once an element crashes, its load is transferred to the other intact ele-

ments according to a given load transfer rule. In this work we use a modified range variable 

model including an anisotropic-stress-transfer function. Avalanches of broken nanopillars, 

critical loads and clusters of damaged nanopillars are analysed by varying both the aniso- 

tropy and effective range coefficients.  
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Introduction 

Fractures and damages of heterogeneous materials are common but usually 

undesirable phenomena. These processes attract much attention from the scientific 

community because of the broad area of technological applications of such materi-

als [1-3]. It is difficult to describe fracture processes by means of statistical models 

because of complex relations between failures and the subsequent transfer of 

stresses. Nevertheless, several models have been proposed, among them the family 

of Fibre Bundle Models (FBM) plays a crucial role [4]. Although FBMs are simple, 

they capture the most important properties of material damage and breakdown. 

In this work we employ the FBM approach to analyse the failure progress 

in arrays of nanopillars assembled perpendicularly to a flat substrate [5]. Such 

an arrangement is applied in the systems of micromechanical sensors. 

It is worth analysing the evolution of mechanical damage of nano-sized pillars. 

This paper is inspired by compressive and tensile experiments performed on metal-

lic micro- and nanopillars that confirm a significant strength increase via the size 

reduction of the sample [6, 7]. Thus, the arrays of free-standing nanopillars can be 

used as components in the fabrication of micro- and nano-electromechanical sys-

tems, micro-actuators or optoelectronic devices [6, 8]. 
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1. Anisotropic range variable model 

The system is composed of LLN ×=  nanopillars located in the nodes of square 

lattice of side length L. Each nanopillar 
i
x  is characterised by its critical load i

thσ , 

which is a strength threshold of the given pillar. Because of various defects during 

the fabrication process the pillar-strength-thresholds i

thσ , Ni ,..,2,1=  are inde-

pendent quenched random variables. It is assumed that the randomness of pillar-

strength-thresholds i

thσ , Ni ,..,2,1=  reflects the disorder of heterogeneous mate-

rial. In this paper we employ uniform distribution of pillar-strength-thresholds with 

the probability density and distribution functions ( ) 1=thp σ , ( ) ththP σσ = . The 

strength-thresholds are drawn from the interval [ ]1,0 . Under the load 
i
σ  exceeding 

strength-threshold i

thσ
 the pillar is instantaneously and irreversibly damaged. 

Initially all the pillars are intact, which corresponds to a zero load.  Then the set 

of pillars is subjected to a quasi-statically increased external load F . In this approach 

longitudinal load F  is the control parameter of the model. The increase of  F  is 

uniform for all intact pillars and it stops immediately when the weakest intact pillar 

crashes. After this destruction the load carried by the damaged pillar is redistributed 

to the other intact pillars. 

In this work we employ an idea of variable range of interaction proposed by 

Hidalgo et al. [9]. Due to the substrate elasticity we introduce anisotropy in stress 

transfer, so the stress-transfer function has the following form: 
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Here, γ  is an adjustable parameter and I denotes the set of all intact pillars. 

In the original work [9] ijr  denotes distance between the intact element i and the 

damaged element j. Modifying ijr  by an anisotropy coefficient α  we obtain the 

formula for relative distance: 
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Coefficient α  is a measure of stress transfer anisotropy, i.e. 1=α  corresponds 

to the isotropic model and 1>α  represents the stress transfer to pillars in the 

x-direction is α  times faster than the transfer in the y-direction. It is necessary to 

note that this paper is in the spirit of work [10], where a somewhat different aniso- 

tropic load sharing model has been proposed in reference to a generalised discrete 

model. 
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The presented model ensures load transfer from the broken pillar to all intact 

pillars in the system, so the range of interaction overlays the entire system. How- 

ever, the effective range of interaction depends on parameter γ . The limits 0→γ  

and ∞→γ  correspond to two extreme rules of load sharing, namely global (GLS) 

and local (LLS). The GLS rule represents mean-field approach with long-range 

interactions between pillars. After a pillar breaks, its load is equally redistributed to 

all the remaining elements irrespective of their distances from the damaged 

element. Contrary to the GLS, in the LLS rule only short-range interactions are 

assumed. In this scheme the load from the broken element is transferred to 

neighbouring elements only, usually to the nearest ones. From the equation (1) it is 

seen that an increasing γ  reduces the effective range of interaction. Exemplary 

results of the load transfer from the broken pillar to its nearest neighbours are pre- 

sented in Table 1. Different values of γ  and α  are examined within both the GLS 

and LLS rules and it is assumed that only one pillar breaks, whereas other pillars 

stay intact. 

Table 1 

The percentage of load redistributed to the nearest neighbours of the broken pillar. 

Example for the system of 48×48 pillars. Coordinates of the broken pillar: (24,24) 

Load transfer scheme 

Percentage of load transferred to: 

neighbour 

in the x-direction 

neighbour 

in the y-direction 

four nearest 

neighbours 

GLS 0.043 0.043 0.174 

Range variable 

model with 

isotropic/anisotropic 

load transfer 

γ = 1 

α = 1 0.605 0.605 2.420 

α = 2 0.885 0.443 2.656 

α = 3 1.138 0.379 3.034 

γ = 2 

α = 1 4.302 4.302 17.209 

α = 2 8.379 2.095 20.947 

α = 3 11.884 1.320 26.410 

γ = 4 

α = 1 16.605 16.605 66.419 

α = 2 37.947 2.371 80.638 

α = 3 43.411 0.536 87.893 

γ = 8 

α = 1 23.357 23.357 93.427 

α = 2 49.416 0.193 99.218 

α = 3 49.775 0.008 99.564 

γ = 10 

α = 1 24.203 24.203 96.811 

α = 2 49.866 0.049 99.830 

α = 3 49.948 0.001 99.898 

LLS 25.000 25.000 100.000 

 

The load transfer increases stress on the intact pillars. This increasing stress may 

cause other failures and then subsequent transfers followed by possible failures. 
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If the load transfer does not trigger further failures, a stable state is achieved. 

Then the external load F has to be increased with an amount as small as to provoke 

damage of the weakest intact pillar. It can initiate an avalanche of failures. 

The loading process is continued until the whole array of pillars collapses. 

2. Analysis of the simulation results  

Computer simulations were realised for different values of γ  and α , and system 

sizes 4848×=N , 128128×=N . In order to obtain reliable statistics we have 

performed at least 3
102×  simulations for the each variant of the former system 

size. 

When the system is subjected to a quasi-statically increased external load the 

cascades of simultaneous pillar crashes appear. These pillar failures are similar to 

avalanches occurring in snow or sand movement. Due to this similarity, the number 

of crashed pillars under an equal external load is called an avalanche )(∆ . In other 

words, the avalanche is the number of destroyed pillars between two consecutive 

external load increments. 

The final stage of the damage process is the appearance of catastrophic (critical) 

avalanche )(
c
∆  which contains all still undestroyed pillars. This complete break- 

down of the system is induced by the total critical load 
c
F . 

The first problem investigated here is the distribution of avalanche sizes. Let 

( )∆D  denote the number of avalanches of size ∆ . Figure 1 illustrates the avalanche 

size distributions for { }8,4,2∈γ  and 2=α .  It turns out that for 2=γ  and 4=γ  

distribution of avalanche sizes follows a power law: 

 ( ) τ−

∆∝∆D  (3) 

with exponents 75.2≈τ  and 4.3≈τ , respectively. Value of exponent for the 

system with effective long range interactions )2( =γ  is close to 5.2≈τ , which is 

a universal mean-field exponent for the GLS rule. As it can be seen, the most abrupt 

way of system destruction is represented in arrays with effective short-range inter- 

actions )8( =γ . In that case departure from the power law behaviour is observed. 

It should be noted that critical avalanches are omitted in Figure 1. 

Although during the damage process the load of individual pillars in the system 

is mostly unequal (with the exception of the GLS rule), it is convenient to scale the 

load F by the initial system size NF /=σ . Such scaled results are presented 

in Figure 2 which shows dependence between mean critical load NF
cc
/=σ  

and values of anisotropy coefficient α  for different γ . We have noticed that sys- 

tems with effective long-range interactions ( 1=γ  and 2=γ ) are almost insensitive 

on α  changes. The results obtained for 1=γ  and different α  are equal to each 

other with an accuracy to three decimal places ( 251.0=
c
σ ). It is worth mention- 
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ing that for the GLS rule 
c
σ  asymptotically tends to 25.0  which is close to the 

results obtained for 1=γ  and 2=γ . Influence of anisotropy is more pronounced 

for 4=γ : 
c
σ  decreases nearly linear with the increase of α . When the effective 

short-range interactions ( 12,10,8=γ ) are considered and α  grows three intervals 

can be distinguished in 
c
σ  changes: decrease, small increase and again decrease. 

From Figure 2 it is also seen that the bigger the effective range of interactions, the 

stronger the system. This ordering is preserved for consecutive values of anisotropy 

coefficient α . 
 

 

Fig. 1. The avalanche size distributions for the systems with anisotropy coefficient α = 2 

and different values of γ parameter: γ = 2 (circles), γ = 4 (squares), γ = 8 (diamonds). 

 The results are obtained from 10 000 independent samples for each γ parameter. 

Size of the system N = 48×48 pillars 

 
Fig. 2. The mean critical load σ

c
 versus the anisotropy coefficient α for different values 

of γ: γ = 2 (circles), γ = 4 (squares), γ = 8 (diamonds), γ = 10 (up triangles), 

γ = 12 (down triangles). The results are obtained from at least 2000 samples 

for each presented value. Size of the system N = 48×48 pillars 
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Under the influence of critical load the catastrophic avalanche occurs breaking 

all the remaining intact pillars. Dependence between the scaled mean sizes of criti-

cal avalanches and values of anisotropy coefficient is illustrated in Figure 3. Here, 

compared to Figure 2, decreases/increases correspond to increases/decreases. It is 

important to remark, that under the GLS rule 5.0/ →∆ N
c

. 

Critical avalanche has its own self-sustained dynamics related to the stress 

redistribution only. During the critical avalanche a series of sub-avalanches appear. 

Such an avalanche, also called inclusive avalanche [11], is the number of damaged 

pillars per step of internal stress redistribution. Figure 4 illustrates distribution of 

inclusive avalanches for three different effective ranges of interactions and aniso- 

tropy coefficient 2=α . Systems with effective long-range interactions ( 2=γ ) are 

characterised by distribution similar to that reported for the GLS rule [12]. For 

2=γ  and 4=γ  distribution of medium-size sub-avalanches is close to power law. 

On the other hand, sub-avalanche size distribution for the systems with effective 

short-range interactions )8( =γ  is clearly non-trivial. 
 

 
Fig. 3. The mean size 〈∆

c
〉 of the critical avalanche scaled by the number of pillars 

N versus the anisotropy coefficient α for different values of γ: γ = 2 (circles), 

γ = 4 (squares), γ = 8 (diamonds), γ = 10 (up triangles), γ = 12 (down triangles). 

The results are obtained from at least 2000 samples for each presented value. 

Size of the system N = 48×48 pillars 

In the following we analyse empirical distributions of critical loads 
c
σ  and 

critical avalanches 
c
∆ . The exemplary empirical probability density functions and 

empirical cumulative distribution functions for these two quantities have been shown 

in Figures 5-8. For all investigated systems, both 
c
σ  and 

c
∆  are well fitted by 

three-parameter skew normal distribution [13-15]. When the effective range of inter- 

actions is short, the distribution of 
c
σ  is always negative skew. In the same situation 

distribution of 
c
∆  is positive skew. Taking into account systems with effective 
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long-range interactions ( 2=γ ) it turns out that 
c
σ  and 

c
∆  have an approximately 

Gaussian distribution (a special case of the more generic skew normal distribution). 
 

 
Fig. 4. The inclusive avalanche size distributions for the systems with anisotropy 

coefficient α = 2 and different values of γ parameter: γ = 2 (circles), γ = 4 (squares), 

γ = 8 (diamonds). The results are obtained from 10 000 independent samples 

for each γ. Size of the system N = 48×48 pillars 

 
Fig. 5. The empirical probability density functions of the critical load σ

c
 in an array 

of 48×48 nanopillars and γ = 8. Three different values of α are compared: 

α = 1 (circles), α = 2 (squares) and α = 3 (diamonds). Solid lines represent 

skew-normally distributed σ
c
 with the location, scale and shape parameters computed 

from the samples. Each pdf was built on 10 000 independent configurations 

 
Fig. 6. The empirical cumulative distribution functions of the critical load σ

c
 in an array 

of 48×48 nanopillars and α = 2. Four different values of γ are compared: 

γ = 2 (grey solid line), γ = 4 (dashed line), γ = 8 (black solid line), γ = 10 

(dot-dashed line). Each cdf was built on 10 000 independent configurations 
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Fig. 7. The empirical probability density functions of the critical avalanche size ∆

c
 

in an array of 48×48 nanopillars and γ = 8. Three different values of α are compared: 

α = 1 (circles), α = 2 (squares) and α = 3 (diamonds). Solid lines represent 

skew-normally distributed ∆
c
 with the location, scale and shape parameters computed 

from the samples. Each pdf was built on 10 000 independent configurations 

 
Fig. 8. The empirical cumulative distribution functions of the critical avalanche size ∆

c
 

in an array of 48×48 nanopillars and α = 2. Four different values of γ are compared: 

γ = 2 (grey solid line), γ = 4 (dashed line), γ = 8 (black solid line), γ = 10 (dot-dashed 

line). Each cdf was built on 10 000 independent configurations 

Damage evolution can also be viewed as a nucleation process of clusters of 

broken pillars. Such a cluster is a group of connected damaged pillars. Two pillars 

are treated as connected when they are placed in the neighbouring nodes. We 

investigate clusters of broken pillars for systems of 128128×=N  pillars assuming 

identical arrangement of identical pillars. Anisotropy of the system is characterised 

by 2=α  and different γ  are considered. Clusters are analysed in stable states from 

zero load to load just before global failure. Figure 9 presents dependence between 

mean cluster size and total load of the system. When 2218<F , so all analysed 

systems are still working, following ordering is noticeable: the longer the effective 

range of interaction, the smaller the mean cluster size. This can be explained as 

follows. When the effective range of interaction is long, the pillars are destroyed in 

a stochastic way. This is contrary to effective short-range interactions - in that case 

probability of damage of broken pillar neighbours increases. Figure 10 illustrates 
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dependence between number of clusters and total load. From this figure it is seen: 

the longer the effective range of interactions, the bigger the number of clusters. 

This is consistent with our previous explanation. In systems with the effective long 

range of interactions )2( =γ  the number of clusters increases, then achieves maxi- 

mum and finally goes down. The behaviour in last stage results from connection 

of neighbouring clusters and failures of pillars adjacent to already existing clusters. 

 

 
Fig. 9. The mean cluster size s versus total load F for single samples of sizes 

128×128 nanopillars and α = 2. Three different values of γ are compared: 

γ = 2 (black solid line), γ = 4 (light grey solid line), γ = 8 (dark grey dashed line) 

 
Fig. 10. The number of clusters n(s) versus total load F for single samples of sizes 

128×128 nanopillars and α = 2. Three different values of γ are compared: 

γ = 2 (black solid line), γ = 4 (light grey solid line), γ = 8 (dark grey dashed line) 

Conclusion 

In summary, we have studied the failure process in longitudinally loaded arrays 

of nano-sized pillars with statistically distributed strength-thresholds for break-

down of an individual pillar. Load coming from destroyed pillars was transferred to 

other intact ones in accordance with range variable model modified by anisotropic-

stress-transfer function. We have found that distribution of avalanche sizes for 

anisotropic systems with long and moderate effective range interactions 2( =γ  and 

)4=γ  is power law. 
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 Increasing the anisotropy coefficient in the systems with effective short-range 

interactions three stages of changes of mean critical loads and mean catastrophic 

avalanches are observed. Systems with effective long-range interactions are highly 

resistant to changes of the anisotropy coefficient. 

Based on computer simulations we have built empirical probability density and 

cumulative distribution functions of critical loads and critical avalanche sizes. 

These distributions are nicely fitted by skew normal distribution. 
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