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Abstract. In the paper the description of numerical analysis of the heat transfer process 

proceeding in a two-dimensional silicon thin film is presented. It is assumed that some  

parameters like relaxation time and boundary temperatures appearing in the mathematical 

model of the analyzed problem are given as intervals. The discussed problem has been 

solved using the interval form of the lattice Boltzmann method applying the rules of the  

directed interval arithmetics. In the final part of the paper, the results of numerical compu-

tations are shown. 
 

Keywords: heat transport, the interval lattice Boltzmann method 

1. Boltzmann transport equation 

The Boltzmann transport equation (BTE) is one of the fundamental equations of 

solid state physics and takes the following form [1-3] 
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where f is the phonon distribution function, 
0f  is the equilibrium distribution 

function given by the Bose-Einstein statistics, v is the phonon group velocity, 
r
τ is 

the relaxation time and efg  is the phonon generation rate due to electron-phonon 

scattering. 

In order to take advantage of the simplifying assumption of the Debye model, 

the BTE can be transformed to an equation on carrier energy density of the 

following form [1, 4] 
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where e is the phonon energy density, 0
e  is the equilibrium phonon energy density 

and 
v

q  is the internal heat generation rate related to a unit of volume.  
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The equation (2) must be supplemented by the boundary-initial conditions. 

Using the Debye model the relation between phonon energy density and lattice 

temperature is given by the following formula 
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where 
D
Θ is the Debye temperature of the solid, 

b
k  is the Boltzmann constant, T is 

the lattice temperature while η  is the number density of oscillators and can be cal-

culated using the formula 
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where h  is the Planck constant divided by 2π  and ω  is the phonon frequency. 

2. Interval lattice Boltzmann method 

The interval lattice Boltzmann method (ILBM) is a discrete representation of the 

Boltzmann transport equation. For 2D problems the interval Boltzmann transport 

equation can be written as  
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where e  is the interval phonon energy density, 0
e  is the interval equilibrium 

phonon energy density, ,

r r r

− + τ = τ τ   is the interval relaxation time [4, 5].  
 

Equation (5) must be supplemented by the boundary conditions, for example for 

a square domain which is considered in the paper 
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and the initial condition of the following form: 
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given interval boundary temperatures, 
0
T  is the initial temperature. 
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For a two-dimensional 9-speed model the discrete phonon velocities are 

expressed as [1]  
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where / /c x t y t= ∆ ∆ = ∆ ∆  is the lattice speed, x∆  and y∆  are the lattice dis-

tances from site to site, 
1f f

t t t
+

∆ = − is the time step needed for a phonon to travel 

from one lattice site to the neighboring lattice site and d  is the direction. 
 

The interval lattice Boltzmann method algorithm has been used to solve the ana-

lyzed problem [1, 6, 7]. The ILBM discretizes the space domain considered by  

defining lattice sites where the phonon energy density is calculated.  

The lattice is a network of discrete points arranged in a regular mesh with pho-

nons located in lattice sites. Phonons can travel only to neighboring lattice sites by 

ballistically traveling with a certain velocity and collide with other phonons resid-
ing at these sites according to Figure 1 [1]. 

 

 

Fig. 1. Two-dimensional 9-speed (D2Q9) lattice Boltzmann model 

The discrete set of propagation velocities in the main lattice directions can be 

defined as (see (8))  
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In the interval lattice Boltzmann method is needed to solve nine equations 

allowing one to compute phonon energy in different lattice nodes according to the 

following equations: 
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The approximation of the first derivatives using right-hand and left-hand sides 

differential quotients is written as  
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Thus one obtains the approximate form of the interval Boltzmann transport 

equations for a two-dimensional  problem in nine directions of the lattice [1, 2] 
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The total energy density is defined as the sum of discrete phonon energy  

densities in all the lattice directions 
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The equilibrium phonon energy density is the same in all lattice directions and 

can be calculated using the formula 
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where D is the number of all propagation directions in the lattice. 
 

After subsequent computations the lattice temperature is determined using the 

following formula (see eq. (3)) 
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3. Numerical examples 

As a numerical example the heat transport in a thin silicon film of the dimen-

sions  200 nm ×  200 nm has been analyzed. The following input data have been in-

troduced: the relaxation time [6.36675, 6.69325]ps
r
τ = , the Debye temperature 

640K
D

Θ = , the boundary conditions 
1

[780, 820]K
b
T =  and 

2 3 4
[292.5, 307.5]K

b b b
T T T= = = , the initial temperature 

0
300 KT = . The lattice 

step 20 nmx y∆ = ∆ =  and the time step 5pst∆ =  have been assumed (see  

Fig. 2).  

 

 

Fig. 2. Discretized domain  

 In the first example the internal heat generation rate related to a unit of  

volume qv = 0 has been assumed. Figure 3 presents the courses of the temperature 

function at the internal nodes 1 (40 nm, 20 nm), 2 (160 nm, 40 nm) and 3 (100 nm,  

100 nm).  

Figure 4 illustrates a comparison between the heating curves obtained using  

interval LBM and the results obtained using classical LBM for mean values of 

thermophysical parameters (dashed lines) at the same nodes as in Figure 3. 
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Fig. 3. Heating curves at internal nodes  
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Fig. 4. Heating curves at internal nodes - comparison of interval LBM  

and classical LBM results 

In the second example the internal heat generation rate related to a unit of  

volume has been assumed as qv = 10
18
 W/m

3
. Figure 5 shows the courses of the 

temperature function at the internal nodes. Figure 6 illustrates the interval heating 

curves at the same internal nodes for wider intervals of the boundary conditions 

(
1b
T = [760, 840] K, 

2 3 4b b b
T T T= = = [285, 315] K) and the relaxation time  

(
r
τ = [6.2035, 6.8565] ps). The interval temperatures are, of course, wider. 
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Fig. 5. The interval heating curves at internal nodes for qv = 10
18 W/m3 
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Fig. 6. The interval heating curves at internal nodes for wider intervals  

for qv = 10
18 W/m3 

Conclusions 

In the paper the Boltzmann transport equation with the interval values of the  

relaxation time and the boundary conditions has been considered. The interval  

version of the lattice Boltzmann method for solving 2D problems has been presen-

ted. The generalization of LBM allows one to find  the numerical solution in the  
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interval form and such information may be important especially for the parameters 

which are estimated experimentally, for example the relaxation time. 

The solutions obtained for mean values of the relaxation time and the boundary 

temperatures using the classical lattice Boltzmann method  are always in intervals 

that are solutions of the interval lattice Boltzmann method. Increasing of the inter-

val width of the relaxation time and boundary conditions widens temperature  

ranges.  
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