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Abstract. In this paper the 2D heterogeneous tissue domain (forearm cross-section) insu-

lated by a layer of protective clothing is considered. The aim of considerations is to develop 

an algorithm simulating the tissue heating process resulting from the sudden change of ex-

ternal boundary conditions. Here, the authors exploit a certain version of the control volume 

method (CVM) using the Voronoi tessellation. The mathematical model of heat exchange 

in the domain analyzed is formulated in the form of a boundary-initial problem based on the 

system of partial differential equations (energy equations) supplemented by the adequate 

boundary and initial conditions. In the final part of the paper, the examples of numerical 

simulations are shown. 
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1. Governing equations 

The cross-section of a forearm is shown in Figure 1 [1]. In the domain consid-

ered one can distinguish the sub-domains of different tissues and additionally the 

large blood vessels (arteries and veins).  
 

  

Fig. 1. Forearm cross-section and its geometrical model 



M. Ciesielski, B. Mochnacki 14 

The thermal processes proceeding in the tissue sub-domains are described by 

the system of the Pennes equations 
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where e = 1,…,4 corresponds to skin, fat, muscle and bone sub-domains, ce is the 

volumetric specific heat, λe is the thermal conductivity, Qper and Qmet are the  

capacities of volumetric internal heat sources connected with the blood perfusion 

and metabolism [W/m
3
], T, x = {x1, x2}, t denote temperature, spatial co-ordinates 

and time.  
 

Assuming that the tissue is fed by a large number of evenly spaced capillary 

blood vessels one has 

 ( ) ( ) ( ) ( ), , / 2per e b be b e b b artery b veinQ T c G T T T x t T T T=  −  = +   (2) 

where Gbe is the blood perfusion [m
3
 blood/(s m

3
 tissue)], cb is the blood volumetric 

specific heat and Tb artery and Tb vein are the arterial and vein blood temperatures. The 

metabolic heat source Qmet can be treated as a constant value or a temperature-

dependent function [2]. 
 

On the contact surface between the tissue sub-domains the continuity of tem-

perature and heat fluxes is assumed 
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where ∂ / ∂n denotes a normal derivative. 
 

The temperature field in the fabric region is described by the well-known  

Fourier equation 
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where c0 is the volumetric specific heat of fabric, λ0 is the thermal conductivity. 

Between the fabric and tissue the air gap (trapped air) should be taken into  

account and the continuity of heat flux leads to the following boundary condition 
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where R(x,t) is the trapped air thermal resistance. 
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On the external surface of the system the Robin condition is assumed 

 
( )

( ) ( )0

0 0 0

,
: ,

out amb

T x t
x T x t T t

n

∂
∈Γ − λ = α  −  ∂

 (6) 

where αout is the heat transfer coefficient, Tamb is the ambient temperature. The 

same type of boundary conditions is given on the contact surfaces between the 

blood vessels and soft tissue sub-domains, in particular  
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and 
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Fig. 2. Tissue and fabric sub-domains  

The initial conditions are also given 

 ( ) ( )0
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where T0e is the initial temperature distribution. In this paper this distribution corre-

sponds to the steady state conditions in the domain considered for the assumed  

ambient temperature and the assumed value of initial heat transfer coefficient αout.  
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In Figure 2 the domain being the composition of tissue and fabric regions is 

shown (the domain discretization is also marked). The thickness of the air gap  

(according to literature [3]) in this region is equal to 0.5 cm. From a theoretical 

point of view the thermal resistance of trapped air is a variable value, but the test 

computations show that the assumption of the constant value R(x,t) = R is quite  

exact and acceptable. 

2. Control volume method 

At the stage of numerical modeling the control volume method using the Voro-

noi tessellation has been used. Such a version of CVM was discussed in detail by 

Ciesielski and Mochnacki in [4, 5]. Here, only the basic information concerning 

this variant of CVM will be presented. So, the domain analyzed is divided into N 

volumes in the shape of Voronoi polygons (Fig. 3). The CVM algorithm allows 

one to find the transient temperature field at the set of nodes corresponding to the 

central points of the control volumes, and the nodal temperatures are found on the 

basis of energy balances for the successive CV. 
 

 

Fig. 3. Control volume CVi 

Let us consider control volume CVi with the central node xi. It is assumed here 

that the thermal capacities and capacities of the internal heat sources are concen-

trated at the nodes representing elements, while the thermal resistances are concen-

trated on the sectors joining the nodes. The energy balances corresponding to the 

heat exchange between the analyzed control volume CVi and adjoining control  

volumes results from the integration of energy equation (e.g. (1)) with respect to 

time and volume CVi . Let us consider the interval of time ∆t = t 
f + 1

 − t 
f
. Then 

 

( )
( )

( ) ( )

( ) ( )

1 1

1

,
d d , d d

d d

f f

f f
i i

f

f
i

t t

e

e e e

CV CVt t

t

per e met e

CVt

T x t
c T V t T T x t V t

t

Q T Q T V t

+ +

+

∂
= ∇λ ∇  ∂

 + + 

∫ ∫ ∫ ∫

∫ ∫

 (10) 



Numerical simulation of the heating process in the domain of tissue insulated by protective clothing 17

Using the Gauss-Ostrogradsky's theorem one obtains 
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where Ai is the surface (perimeter) limiting CVi. The numerical approximation of 

the left-hand side of equation (11) can be accepted in the form 
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where ci
f
 is an integral mean of thermal capacity and this value is approximated by 

the volumetric specific heat corresponding to the temperature T 
f
 (explicit scheme). 

Similarly 
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The term determining heat conduction between CVi and its neighbourhoods can 

be written in the form 
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In the case of internal nodes 
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It can be shown that for the control volume CVi for which on the surface Ai(j) the 

Robin condition is given  
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while for CVi for which on the surface Ai(j) the continuity condition (5) is given 
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The energy balance (11) written in the ‘explicit’ form leads to the equation 
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where 
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The stability condition of explicit scheme 
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(for all control volumes CVi) allows one to determine the critical time step. 

3. Example of numerical simulation 

The domain considered stays in the thermal contact with the environment whose 

temperature is equal to Ta = 20°C, while the heat transfer coefficient between the 

fabric and environment αout = 3.7 W/m
2
K. The initial temperature distribution cor-

responds to the solution of the steady state problem - Figure 4. Thermophysical  

parameters of successive sub-domains are taken from [6]. Additionally Tb artery = 

= 36°C, Tb vein = 35°C, while αartery = αvein = 5000 W/m
2
K. At the moment t = 0  

the ambient temperature increases to 70°C (heat transfer coefficient αout =  

= 100 W/m
2
K).  

 

 

Fig. 4. Initial condition 
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Figures 5 and 6 show the temperature distributions for time 1 min and 10 min. 

One can see that for t = 10 min the skin tissue temperature is close to the tempera-

ture for which the burn wounds can appear and a prolonged stay in such environ-

ment is rather dangerous. 
 

 

Fig. 5. Temperature distributions for time 1 min 

 

Fig. 6. Temperature distributions for time 10 min 

4. Final remarks 

The main goal of the paper was to present the possibilities of the CVM applica-

tion (in the version discussed) for numerical solution of the bio-heat transfer  
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problems. The essential advantage of the method proposed is the fact that the shape 

and location of tissue sub-domains can be accurately reproduced (if the assumption 

of 2D approximation is acceptable). Additionally, the Voronoi polygons assure the 

good approximation of energy balances (11). The problem of boundary conditions 

joining is also very simple. The mathematical model used here belongs to the group 

of the so-called tissue models based on the Pennes equation. The typical feature of 

this approach is the introduction of additional terms corresponding to perfusion and 

metabolic heat sources to the energy equation. The method presented can be used 

for numerical modeling of different problems from the scope of medical practice 

(e.g. simulation of cryosurgical treatments).  
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