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Abstract. In this paper, the results of numerical studies on optimization of a geometrically 

nonlinear column with an internal crack by means of genetic algorithms are presented. 

The system is loaded by an axially applied external force P with a constant line of action. 

The presented problem is formulated on the basis of the principle of stationary total poten-

tial energy. The main purpose of this paper is to investigate an influence upon the localiza-

tion of the crack and flexural rigidity ratio on critical loading of the system and to find an 

optimum localization of the crack in order to achieve high loading capacity. In order to 

calculate optimum values of these parameters the genetic algorithms are implemented 

into computer program. The artificial method of solution of the problem has been used 

due to the strongly nonlinear nature of the investigated problem. 
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Introduction 

The study on natural vibration, critical loading and instability of the nonlinear 

columns and beams subjected to an axially applied load were the subject of numer- 

ous scientific investigations and experiments. The first papers have already 

appeared in the past century. 
In this study the problem of optimization of the geometrically nonlinear column 

consisting of three rods with divergence instability is taken into account. In the 

investigated system the first element is a continuous rod and the crack has been 

placed in the connection of rods two and three. The crack size has been modeled by 

means of a pin and rotational spring with stiffness C. The investigated column 

is loaded by the external force P with constant line of action. The scientific 

researches of columns with crack were performed by Kukla [1] and Wang [2]. 

The numerical calculations of divergence instability were performed by Przybylski 

[3] and Tomski [4]. The problem of instability and natural vibration have been 

formulated by means of the principle of stationary total potential energy. Aside 

from analytical models, the numerical ones were also investigated [5-7]. 
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The choice of the optimization algorithm is a quite problematic task. The 

implementation of the greedy algorithm can lead to a local optimum. The selection 

of deterministic algorithms strongly limits the application. The best choice for 

the presented task is to select a group of non-deterministic heuristic algorithms 

[8]. 

1. Problem formulation 

In Figure 1 the nonlinear cantilever column under investigation is presented. 

Member I consists of rod (1), and member II elements are rods (2) and (3) connect-

ed by a pin strengthened by a rotational spring of stiffness C. This type of connec-

tion models an internal crack in the system. The smaller value of C is the greater 

crack. The investigated system is loaded by a concentrated axially applied force P 

in the point of connection of rods (1) and (3). The deflection angles of these rods 

are identical. The rods have a length 3,2,1=
i
l  respectively. The physical struc-

tures of the considered system are shown in Figure 2 - a) two coaxial tubes, b) tube 

and rod, c) flat frame. 
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Fig. 1. The nonlinear system under con-

sideration subjected to Euler’s load 

Fig. 2. Exemplary models of real-life 

structures 

The presented problem is formulated on the basis of the principle of stationary 

total potential energy as follows: 
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where: Ei - Young modulus, Ji - moment of inertia, Ai - cross-section area, ρi - den-

sity of the material, C - rotational spring stiffness, P - external load. 

Equating the first variation of the potential energy to zero, and performing vari-

ational and integration operations leads to: 
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Assuming that virtual displacement: longitudinal )(
ii
xUδ  and transversal )(

ii
xWδ  

for 3,2,1=i ; are arbitrary and independent for 0 < xi < l the following formulas 

were obtained: 

 

(2)
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equation of displacement in a transversal direction 
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equation of displacement in a longitudinal direction 
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equation of immutability of the strain along the length of the element 
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After integration of equation (5), the axial force is defined as follows: 
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The equation (3) after introducing (6) has the following form: 

 0)()( =+
i

II

iii

IV

iii
xWSxWJE ,    i = 1, 2, 3 (7) 

In equation (7) Roman numerals define the derivatives with respect to space 

variable x
i
. Inserting the geometrical boundary conditions in the form: 
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Introducing geometrical boundary conditions into equation (2) leads to derivation 

of the following natural boundary ones: 
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The results of numerical calculations are presented in the non-dimensional form 

on the basis of the following relations: 
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2. Optimization of the solution 

The modeling of the influence of the particular boundary and initial conditions 

on the results of the solution requires appliance of methods which are able to auto-

matically perform the selection of the best solution. The genetic algorithms are 

undoubtedly one of these methods. 

The presented method in this paper of solution by means of numerical algo-

rithms in order to browse the space of alternative solutions, allows one to calculate 

demanded parameters of investigated construction. Genetic algorithms give the 

possibility to browse a large space of solutions, with much smaller than in classical 

methods tendency to determine the local optimum [9-11]. This is the reason why 

the genetic algorithms are used to perform the solution of strongly nonlinear prob-

lems. 

The algorithm presented in this paper can be described in the following steps 

[10, 11]: 

1. Creation of random initial population in the entire range of solution. 

2. Genes are coded in the binary form. 

3. Selection of population on the basis of the fitness - function by means of 

a multicriteria selection method (combination of roulette wheel and ranking 

selection). 

4. Addition of the new specimen to parent population. 

5. Multicrossing of genes of a parent population created in steps 3 and 4. 

6. Mutation of new population with the probability of the α order. 

7. Determination of the condition of the optimum solution for the group of the best 

values of chromosomes. 
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After fulfilling the condition of the optimum solution for the group with the best 

features, the winner is chosen and becomes the required value of the solution of the 

nonlinear problem. 

3. Numerical results and discussion 

In the presented problem the population size has been set to 1000. Each value 

was represented by the number coded by 12 bits (12 genes per 1 chromosome). The 

next parent population was chosen from the half of initial population by means of 

combination of roulette wheel and ranking selection methods. In the "child" solu-

tion, the best parent has been represented by the 1% in the population without 

crossover. In the next population the first 10% of the specimens have been copied 

without crossover from the previous solution. The new specimens (unrelated) have 

been represented by 1% of the population. The remaining part of the population has 

been created by means of multicrossing (4 - points crossing). The mutation has 

been performed on 100 genes, which were chosen from random chromosomes. The 

exit condition is presented by the following formula: 
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where: lChr - number of chromosomes, p
MAX
 - required magnitude of the external 

load (in the presented problem p
MAX
 has been set to 2.4; where the critical loading 

for the investigated slender system is 4/
2
π=

cr
p ), 

R

i
p  - magnitude of the eternal 

load for the i-th chromosome of population, LP - number of iterations of the genetic 

algorithm. 

At the beginning, the series of numerical calculations were performed in a step 

by step mode (without automatic optimization). In this mode it is hard to optimize 

the investigated system because only one parameter may be changed by the user 

during one series of calculations (for example - for specific crack size the critical 

force is calculated). The results presented in Figure 3 are concern on relation: criti-

cal force p
cr
 versus crack size c for different crack localization - d

2
 = 0.3, 0.5, 0.7. 

These results were obtained in Mathematica software. 

It can be concluded that there exists such value of c above which the critical 

loading of the column is constant. The numerical study shows that c greater than 10 

has no influence on critical loading. An important feature of the investigated 

system is that curves plotted in Figure 3 tend to asymptote 4/
2
π . 

In Figure 4 curves critical loading versus crack localization have been present-

ed. If c tends to infinity the crack localization has no influence on critical loading. 

For smaller c (greater crack) the change of crack localization form the fix end to 
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the free one results in stabilization of the critical loading. Further reduction of c 

allows for greater changes in the critical force magnitude regardless of crack 

localization. 
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Fig. 3. Influence of crack size on critical loading for different 

crack localization (r
m
 = 1, r

w
 = 1) 
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Fig. 4. Influence of crack location on critical loading (r

m
 = 1, r

w
 = 1) 

On the basis of the results presented in Figures 5-7, the automatic optimization 

model has been created. In the first task, the optimum location of the crack has 

been investigated for given magnitude of external load p = 2.4 and crack size c = 0, 

1, 5, 10. The results were plotted in Figure 5. 
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Fig. 5. Optimum crack location in relations to crack size 

and flexural rigidity ratio (r
w
 = 1) 

For a given magnitude of external load, a different crack size and flexural rigidi-

ty factor rm the optimization of crack location has been performed. It has been con-

cluded that the greater c causes the extension of the range at which the crack may 

appear (the column is able to transfer given external load). For the whole crack 

range the increase of the magnitude of flexural rigidity factor results in the increase 

of the minimum crack location. 

In the second task, the optimum size of the crack for desired external load 

magnitude p = 2.4 and crack location d2 = 0.25, 0.5, 0.75 has been investigated. 

 

 
Fig. 6. Optimum crack size in relations to crack location 

and flexural rigidity ratio (r
w
 = 1) 

For a given magnitude of external load, different crack location and flexural 

rigidity factor rm the optimization of the crack size has been performed. After 
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analysis of the results of numerical calculations obtained from the computer pro-

gram created by the authors, it can be concluded that when the crack is localized 

near the fix end the small tolerance on the crack size for given external load has been 

observed, especially for the systems with high flexural rigidity factor. 

In the third case, the minimum magnitudes of external load and crack location 

have been investigated for crack size c = 1, 5, 10. The results have been plotted in 

the figure below in the range of external load 0.5-2.4. The analysis of the curves 

presented in the Figure 7 allows one to predict the capacity of the system while 

the crack initiation/propagation takes place. For example, in the case for c = 1, 

the change in crack location from the free end in the direction of the support causes 

the reduction of the maximum external load. 

 

 
Fig. 7. The minimum magnitudes of external load and crack location 

for different crack size (r
w
 = 1) 

Greater crack size causes high capacity drop. While r
m
 > 1 the reduction of the 

maximum external load magnitude is being observed regardless to crack size 

and/or location. 

Conclusions 

An implementation of genetic algorithms allows one to optimize systems taking 

into account more parameters during one calculation process. The reduction of time 

which is needed to find the optimum parameters of the investigated system has 

been achieved. Genetic algorithms with a high level of population allow one to 

minimize the risk occurrence of local minimum with respect to analytical methods. 

It can be concluded than the genetic algorithms are very useful tool for the engineer 

for optimization of the shape and mechanical properties of the systems with a wide 

range of applications. 
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