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Abstract. The thermal interactions between the blood vessel and surrounding biological 

tissue are analyzed. The tissue temperature is described by the Pennes equation, while the 

equation determining the change of blood temperature along the blood vessel is formulated 

on the basis of adequate energy balance. These equations are coupled by a boundary condi-

tion given at the blood vessel wall. The problem is solved using the hybrid algorithm, this 

means the temperature field in biological tissue is determined by means of the boundary 

element method (BEM), while the blood temperature is determined by means of the finite 

difference method (FDM). In the final part the examples of computations are presented.  

1. Formulation of the problem 

The biological tissue is heated by one blood vessel [1-3] located at the central part 

of tissue cylinder. Assuming that the tissue temperature is changed only in the radial 

direction (as shown the calculations presented in the papers [4, 5] such an assump-

tion is fully acceptable) the temperature field in the tissue sub-domain is described 

by the Pennes equation 
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where r is the spatial co-ordinate, R1 is the vessel radius, R2 is the external radius of 

tissue sub-domain, λ [W/(mK)] is the constant thermal conductivity of tissue, WB 

[kg/(m
3
s)] is the blood perfusion rate, cB [J/(kgK)] is the blood specific heat, Qmet 

[W/m
3
] is the metabolic heat source and Ta is the arterial blood temperature. 

It should be pointed out that the second component of this equation takes into 

account the presence of the capillaries in the tissue.  
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On the wall of the blood vessel the Robin condition is assumed 
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where α [W/(m
2
K)] is the heat transfer coefficient between the blood vessel and 

surrounding tissue, T(R1, z) is the temperature of vessel wall, while TB(z) is the 

blood temperature. 

On the outer surface of the tissue the Dirichlet condition is accepted 
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where Tt  is the known temperature. 

Distribution of blood temperature TB(z) along the blood vessel is described by 

equation [4, 5] 
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where ρB [kg/m
3
] is the blood density, w [m/s] is the blood velocity, QBmet [W/m

3
] 

is the metabolic heat source. 

Equation (4) is supplemented by initial condition: TB(0) = TB0, this means that 

the inlet temperature TB0 of the blood vessel must be known.  

As can be seen, the equations for biological tissue (1), (2) and vessel (4) are 

coupled by an unknown temperature Tw = T(R1, z).  

2. Method of solution 

The problem is solved using the hybrid algorithm, meaning the temperature 

field in biological tissue is determined by means of the BEM, while the blood tem-

perature is determined by means of the FDM. Equation (1) can be written in the 

form 
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where k = WB cB and Q = WB cB Ta + Qmet. 

The weighted residual criterion [6-8] for equation (5) is of the form  
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where ξ is the observation point, T 
*
(ξ, r) is the fundamental solution and  

it is a function of the form [9] 
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where I0 (·) is the modified Bessel function of the first kind, zero  order, while K0 

(·) is the modified Bessel function of the second kind, zero order [10].   

It can be checked that function (7) fulfills the equation 
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where δ(ξ, r) is the Dirac function. 

Heat flux resulting from the fundamental solution is defined as follows 

 ( )
( )*

*
ξ,

ξ, λ
T r

q r
r

∂
= −

∂
 (9) 

this means  
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where for (r − ξ) > 0: sgn(r − ξ) = 1, for (r − ξ) < 0: sgn(r − ξ) = −1, sgn(0) = 0, I1 

(·) is the modified Bessel function of the first kind, first order, while K1 (·) is the 

modified Bessel function of the second kind, first order [10]. 

Twice integrating by parts of the first component of equation (6) one obtains  
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    (11) 

Taking into account property (8) of fundamental solution one has 
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where q(r) = −λdT(r)/dr. 
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Equation (12) can be written in the form 
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For 
1

ξ R→  and 
2

ξ R→  one obtains 
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The system of equations (14), (15) can be written in the matrix form 
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Introducing the boundary conditions (2), (3) into the system of equations (17) one 

has 
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or 
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Under the assumption that TB(z) is known, this system of equations allows one to 

determine the values of T(R1, z) and  q(R2, z) and next 
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The temperatures at the internal points  are calculated using the formula 
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As mentioned above, to solve the system of equations (19) the blood tempera-

ture TB(z) must be known. This temperature is calculated from the equation (4) 

which can be written as 
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The following discretization of  variable  z is introduced 
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where  zj = jh, h is the mesh step and  j = 0,1,2,...,m. 

The approximation of equation (22) takes the form 
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where T0j denotes the vessel wall temperature for z = zj, as shown in Figure 1. 
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Summing up, for j = 0 the system of equations (19), where the temperature 

TB(0) = TB0 is known, should be solved. Then on the right-hand side of equation 

(26) for j = 0 the temperatures T00 = T (R1, 0) and also TB0 are known. Using this 

equation the temperature TB1 is calculated. Next, the system of equations (19), 

where TB(z) = TB1 (z = h) is known, is solved and the temperature TB2 from formula 

(26) is determined etc. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Discretization 

3. Results of computations 

In the computations the following input data are assumed: thermal conductivity 

of tissue λ  = 0.5 W/(mK), specific heat of blood cB = 3900 J/(kgK), density of 

blood ρB = 1060 kg/m
3
, blood perfusion rate WB = GBρB = 10 kg/(m

3
s), arterial 

blood temperature Ta = 37°C. The metabolic heat sources for tissue and blood are 

equal to Qmet = 1000 W/m
3
, QBmet = 500 W/m

 3
. The radius of blood vessel is equal 

to R1 = 0.002 m and the outer radius of the tissue surrounding the blood vessel 

equals to R2 = 10R1. On the basis of the Nusselt number (Nu = 4) and the Peclet 

number (Pe = 100) [11, 12], the heat transfer coefficient α = 500 W/(m
2
K) and the 

blood velocity w = 0.003 m/s are determined, respectively. The entry blood 

temperature for z = 0 is assumed as TB0 = 37°C. On the outer surface of the tissue 

surrounding the blood vessel Tt = 37°C.  

The domain of tissue has been divided into 10 internal cells (c.f. Fig. 1), the 

mesh step h = R1 = 0.002 m (c.f. equation (26)).  

In Figure 2 the temperature distribution in the tissue domain for z = 0.01 m, 

0.02, 0.03, 0.04 and 0.05 m is presented, while Figure 3 illustrates the course of 

blood temperature along the blood vessel. 
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Fig. 2. Temperature distribution for different values of z 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Blood temperature 

Conclusions 

The thermal interactions between blood vessel and tissue have been considered. 

The temperature distribution has been obtained using the hybrid algorithm. The 

results have been compared with the analytical solution presented in [9] and they 

were practically the same. The algorithm proposed allows one, among others, to 

determine the equilibrium in the length of the blood vessel. 
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