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Abstract. We obtain an integral representation of the classical solution of the conjugation 

problem for the second order parabolic equation with derivatives with respect to tangent 

variables at the conjugation conditions. Using this solution, we construct the Feller semi-

group to which there corresponds a diffusion process with a piecewise-constant generalized 

diffusion matrix and a generalized drift vector. 

Introduction 

In this paper, we consider the problem of construction of the Feller semigroup 

to which there corresponds a multidimensional continuous Markov process such 

that in the lower and upper halfspaces its parts coincide with given processes of 

Brownian motion and the behavior of the process, after its exit onto the common 

boundary of the given domains, is determined by two conjugation conditions given, 

that should be satisfied by the required semigroup. Brownian motion processes are 

given by their generators differential operators with zero transition vectors and 

distinct constants diffusion matrices. Note that the first of conjugation conditions is 

an expression of the Feller property of the required process, and the second condi-

tion corresponds to one of the versions of general conjugation condition of the 

Wentzel type (see [1, 2]). In the considered case, the given condition is determined 

by a linear differential operator with constant coefficients, that contains normal 

derivatives and first and second order derivatives with respect to tangent variables. 

This means that, among the possible extensions of the process of Brownian motion 

at the points of the hyperplanethat separates the upper and lower halfspaces, there 

is only their partial reflection acting on the normal directions along with drift and 

diffusion along the boundary. 

The formulated problem can also be called either a problem on gluing diffusion 

processes or a problem of construction of a mathematical model of diffusion phe-

nomenon in the environment with diaphragm [3, 4]. In the paper, we use analytical 

methods for its solution. With this approach, the given problem can be practically 

reduced to investigate the corresponding conjugation problem for a second order 

Please cite this article as:
Bohdan Kopytko, Andriy Novosyadlo, Feller semigroup for diffusion process piesewise-constant generalized diffusion
matrix and generalized drift vector, Scientific Research of the Institute of Mathematics and Computer Science, 2012,
Volume 11, Issue 4, pages 75-84.
The website: http://www.amcm.pcz.pl/



B. Kopytko, A. Novosyadlo 76 

linear parabolic equation with discontinuous coefficients. We establish classical 

solvability of the latter problem by the method of the limiting integral equation 

using ordinary parabolic simple layer potential. Note also that the assumption that 

the coefficients of the equation and the Wentzel boundary operator are piecewise-

constant and constant respectively allow us to apply the Fourier-Laplace integral 

transformations to the solutions of the system of integral equations to which the 

initial problem is reduced. 

Recall that a similar problem was already investigated earlier in [4]. However, 

a special fundamental solution was used therein which was constructed by the au-

thor, not an ordinary fundamental solution of a uniformly parabolic operator, as one 

of the kernels of the simple layer potential in construction of the integral represen-

tation of the regularized semigroup. We also distinguish the paper [5], where the 

problem of gluing of diffusion process is considered in martingale setting. 

1. Notations, the problem formulation 

The following notations are used in this paper: ℝ = 	ℝ� is a real line; ℂ is 

a complex plane; ℝ� is a real �-dimensional Euclidean space of points � = 

= ���, … , ���, |�| = ���� + ⋯ + �����/�; 	� = 	ℝ�
� = 
� ∈ ℝ�:�� < 0�, 	� = 

= 	ℝ�
� = 
� ∈ ℝ�:�� > 0�, �	 = ℝ��� ≡ 
� ∈ ℝ�: �� = 0�; points in ℝ��� are 

noted as �� = ���, … , �����, such that � = ���,���; ��,
� = ∑ ��
��
���  for 
�,
� ⊂ ℝ� and ���,
�� = ∑ ��
����

���  for 
��,
�� ⊂ ℝ���; ����� = ���������	�����
, ������ = 0, � ∈ 
1, … ,� − 1�, �� = 1 is a unit normal vector to � in the point �� 

directed inside the domain 	�; points in ℝ��� are denoted as ��, �� = 
= ��, ��, … , ��� = ��, ��, ���, also � is interpreted as time coordinate and ��, … �� 

are spatial values; ℝ

��� ≡ �0, ∞� × ℝ�, ℝ


� ≡ �0, ∞� × ℝ���, Ω��
 ≡ �0, ∞� ×	�, � ∈ 
1, 2�; for some fixed � > 0����� ≡ �0,�� × ℝ�, ��� ≡ �0,�� × ℝ���, 

Ω�
��


≡ �0,�� ×	�, � ∈ 
1, 2�; ��is a closure of a set �; ��� = �� ≡
�
��

, �� ≡
�
���

, ��� ≡
��

������
, 
�, �� ⊂ 
1, … ,��, are operator of differentiation; ��� and ��� are the 

symbols of the partial derivative of the order � with respect to � and any partial of 

the order � with respect to � respectively, where � and � are nonnegative integers; 

∇�= ���, … ,����� is a spatial gradient; ∆�
�� 	��⋅, �� = ��⋅, ��− ��⋅, ���, ∆�

��	���,⋅� = 
= ���,⋅� − ���̃,⋅�; ��Ω� (��Ω��) is the set of all continuous functions on Ω (Ω�), 

where Ω is a subset of the region ℝ

���; ��,��Ω� (��,��Ω��) is the set of all continu-

ous functions on Ω (Ω�) that have continuous on Ω (Ω�) derivatives ��� and ���, � = 1, � ≤ 2; ���ℝ�� is a space of bounded and continuous in ℝ� functions   

with norm ‖ ‖ = sup�∈ℝ�| |. By �"��,#�� we will denote the Fourier transform by 

variable �� of the function ���, ���, and by �"̅��,#�� we will denote a Laplace trans-

form by variable � of the function �"��,#��: 
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�"̅��,#�� ≡ % &�����% &����,������, ������
ℝ���




�
, 

 #� ∈ ℝ���, � ∈ ℂ�, where ℂ� ≡ 
� ∈ ℂ ∶ �&	� > '�, ' is some nonnegative con-

stant that is defined by a function �. Everywhere below ( and ) are some positive 

constants that do not depend on ��, �� and as a rule their values are not important to 

us. Other notations will be explained as soon as they have arisen. 

Let us continue with the problem formulation. Assume that in the inner points 

of domains 	� = 	ℝ�
�  and 	� = 	ℝ�

� , � ≥ 2, that are divided by a hyperplane � = ℝ���, are given generating differential operators of some Brownian motion 

processes *� and *� respectively: 
 

where +����
 are real numbers and matrix ,� = -+����
. is symmetric positively de-

fined. Assume also that numeric parameters /�� ,0� ∈ ℝ, 
�, �� ⊂ 
1, … ,� − 1�, and 1�, � ∈ 
1, 2�, with 1� ≥ 0 and 1� + 1� ≠ 0 are given, and matrix / = �/��� is 

symmetrical and positively defined. They will be used to describe properties of the 

diaphragm that is situated on � and it affects a diffusing particle only when it 

reaches the diaphragm. We set up a problem to investigate the existence of a Feller 

semigroup		��, � ≥ 0, that generates a class of continuous Markov processes in ℝ� 

such that their parts in domains 	� coincide with Brownian motion processes that 

are controlled by the operator *�, � = 1, 2. 

In this paper, one such semigroup will be constructed by analytical methods un-

der assumptions that the function 2��, �� = �� ���,  ∈ ���ℝ��, is a solution of 

the next parabolic conjugation problem: 

 ��2��, ��− *�2��, �� = 0, ��, �� ∈ Ω��
, � ∈ 
1, 2�, (2)

 2�0, �� =  ���, � ∈ ℝ� , (3)

 2��, ��, 0 −� = 2��, ��, 0 +�, ��, ��� ∈ ℝ

������, (4)

 
*�2��, ��, 0� ≡

1

2
3 /�����2��, ��, 0����

�,���

+ 30���2��, ��, 0����

���

− 
(5)

−	1���2��, ��, 0 −�+ 1���2��, ��, 0 +� = 0, ��, ��� ∈ ℝ

� , 

where 2��, ��, 0 −� (��2��, ��, 0 −�) and 2��, ��, 0 +� (��2��, ��, 0 +�) are bound-

ary values of the function 2��, ��, 0� (��2��, ��, 0�) as � approaches to ���, 0� ∈
ℝ��� from inside 	� and 	� respectively. 

 *� =
1

2
3 +����
��� 4�4��4��
�

�,���

,		� = 1, 2, (1)
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Note that if the semigroup satisfies equation (2) then the sought process coin-

cides with given Brownian motion processes in 	� and 	�; also the equation (3) 

corresponds to the fact that �� ≡ 6, where 6 is an identity operator. Besides that, the 

formulation of the problem (2) – (5) requires that the function 2��, �� and its deriv-

atives ��2��, ��, � ∈ 
1, … ,��, change continuously as it moves through �. Proba-

bilistic interpretation of conditions (4) and (5) and proper comments were stated in 

the introduction. 

So, we are interested in classical solution of the problem (2)-(5) that is bounded 

by a spatial variable and the function 2(�, �) belongs to  

and its derivatives ��2��, ��,���2��, ��,
�, �� ⊂ 
1, … ,� − 1�, exist and are contin-

uous in all points of the domain ��, �� ∈ ℝ

���. 

2. Solution of the parabolic conjugation problemand construction  

of generalized diffusion process 

We will use a method of boundary integral equations to prove a classical solva-

bility of the problem (2)-(5). 

Theorem 1. Let the coefficients of the operators *�, � ∈ 
1,2� from the problem 

(2)-(5) are real constants that construct a positively defined symmetric matrix ,�, 
and numeric parameters /��, 0�, 
�, �� ⊂ 
1, … ,� − 1�, and	1�, � ∈ {1,2}, satisfy the 

next conditions:	/�� ∈ ℝ, 0� ∈ ℝ, 1� ≥ 0, 1� + 1� ≠ 0		and the matrix	/ = (/��)	is 

symmetric and positively defined. Then the problem (2)-(5) has a unique classical 

solution for every function  ∈ ���ℝ��		and next estimation holds: 

The proof of the theorem is in receiving an explicit form of the solution as 

a sum of Poisson potential and simple layer potential, then a respective estimates 

are proved. Let 7���, �,
�, � ∈ 
1,2�, � > 0, � ∈ ℝ�, 
 ∈ ℝ� is a fundamental solu-

tion (f.s.) of the equation (2): 
 

 

Consider the Poisson potential and simple layer potential 
 

 ��,��Ω��
� ∩ �-Ω

����������., 

 |2��, ��| ≤ (‖ ‖,									��, �� ∈ ℝ�
���.�������� (6)

 

7���, �,
� = 7���, � − 
� = 7���, �� − 
�, �� − 
�� =

= �28������det,����� exp 9−
1

2� �,����� − 
�, � − у�:. 

 2����, �� = 	% 7���, �,
� �
��

ℝ�

, ��, �� ∈ ℝ

���, � ∈ 
1,2�, (7)
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Here  	is the function from (3), and density functions ;�,� ∈ 
1,2�, are to be de-

fined. Notice that dependence of densities ;�, � ∈ 
1,2�	on initial function  	from 

(3) will be defined in the problem by conjugation conditions (4), (5). 

Let us note some properties of the potentials 2��, 2��, � ∈ 
1,2�, that follows di-

rectly from the properties of f.s. 7�� (see [6, Ch. IV] and [7, 8]). In particular, 

if	 ∈ ���ℝ��,	then the functions 2����, ��, � ∈ 
1,2�,	satisfy equation (2) in do-

mains ��, �� ∈ Ω��
, initial condition (3), and in every domain of next form ��, �� 
∈ �0,�< × ℝ�next inequality holds 

where � and � are nonnegative integers. 

Further, let us assume a priori that functions ;���, ��, � ≡ ;���, ���, � ∈ 
1,2�, 
arecontinuous in the domain	��, ��� ∈ ℝ


� , and when ��, �′� ∈ �0,�< × ℝ���	next 

inequalities holds 

Then the functions 2����, ��, � ∈ 
1,2�, satisfy the equation (2) in domains	��, �� ∈

Ω��
, initial condition 2���0,�� = 0, � ∈ ℝ�, and next inequality holds  
 

We will also use formulas of jump of conormal derivatives of simple layer po-

tential on the boundary � = ℝ���. For this, for �� ∈ ℝ���, we define vectors =� = ,� ∙ �, � ∈ 
1,2�, that are called conormals. Due to the assumption of the  

Theorem 1 �,��, �� > 0, � ∈ 
1,2�, so that both conormals have directions inside 

the domain 	�. A derivative of some function >���,� ∈ ℝ�, in the direction of 

every conormal=�, � ∈ 
1,2�, is defined by a formula 
 

 

In the sought case for conormal derivatives of simple layer potentials 2����, ��, � ∈ 
1,2�, for	� > 0 and � = ���, 0� ∈ ℝ��� we will obtain 
 

 

As potentials 2�� and	2��,		� ∈ 
1,2�, satisfy the mentioned conditions then we 

can try to find a solution of the problem (2)-(5) in next form 

 2����, �� = % �?% 7��� − ?, �,
��;�(?,
�, )
ℝ���

�
�,�

�
��, �� ∈ ℝ


���, � ∈ 
1,2�. (8)

 |��� 	���2��(�, �)| ≤ (	‖ ‖������� , (9)

 |;���, ���| ≤ (	‖ ‖����. (10)

 |2����, ��| ≤ (	‖ ‖,						��, �� ∈ �0,�< × ℝ� . (11)

 
4>���4=� = 3 +����
��>(�)

�

���
. (12)

 
42����, ��, 0 ∓�4=� = ±;���, ���, � ∈ 
1,2�. (13)
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where 

Now we have to find unknown functions ;� and ;�	such that conjugation condi-

tions (4) and (5) are satisfied for 2(�, �). Substituting expressions for 2���, ��, � ∈ 
1,2�	in these conditions after some transformations we will obtain 
 

 

where 
 0���
 =

��

�����
+ ∑ �−1�����

���
 	���


	�

�
��


	� , � ∈ 
1, … ,� − 1�, 
/����
 =

!��
�����

,
�, �� ⊂ 
1, … ,� − 1�,@� =
���
�

,@� =
���
�

, 		1 =
�����
�����

. 

 

So from conjugation conditions (4), (5) we have obtained a system of equations 

(16), (17) with respect to unknown functions ;� , � ∈ 
1,2�. As one can see, the first 

equation is an integral Volterra equation of the first kind, and the second one is an 

integral-differential Volterra equation of the second kind. We will show that the 

system of equations (16), (17) can be solved using the integral Fourier transform-

with respect to the variable ��and the integral Laplace transform with respect to 

variable �. We have agreed to denote Fourier-Laplace transforms of the function �(�, �′) by�"̅��,#�� (see Ch. 2). Obviously we will consider that this transformation 

exists for every function from equations (16) and (17). After application of the 

Fourier-Laplace transform to every equation in the system (16) and (17) it trans-

forms into algebraic system of equations with respect to the images ;�A���,#��, � ∈ 
1,2�, and we will obtain 

 2��, �� = 2���, ��, ��, �� ∈ Ω��
, � ∈ 
1,2�, (14)

 2���, �� = 2����, ��+ 2����, ��. (15)

 
3 �−1�����

���
% �?% 7��� − ?, �� − 
�, 0�;��?,
��

ℝ���

�
� =
�

�

= 2����, ��, 0�− 2����, ��, 0�, (16)

 

3 @��

���
B91

2
3 /����
��� +

���

�,���
3 0���
�����

���
: 	2����, ��, 0�+  

(17)+(−1)�
42����, ��, 0�4=� −

;���, ���+����
 + 91

2
3 /����
��� +

���

�,���
 

+3 0���
�����

���
:% �?�

�
% 7��� − ?, �� − 
�, 0�;��?,
��
ℝ���

�
�C = 0, 
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where 
 DE���,#�� =

2@�+����
% 47�̅���,#	�,�� − 
��4=�


�
|���� ∙  ��#�,
���
� −

−
2@�+����
% 47�̅���,#	�, �� − 
��4=��

�

|���� ∙  ��#�,
���
�	, 

FE̅���,#�� = G2+����
��+ '��H��� I@�J 2+����
 �� + '��+ @�J 2+����
 �� + '��+ KL��, 

'� =
1

2
�M�	#�,#��,								M� = -ℎ��

(�).
�,���

���
,								ℎ��(�) = +��(�) −

+��(�)+��(�)+��(�) , 

K =
1

2
�/�	#�,#��+ �	�0�� ,#��,								/� = -/��(�).�,������

,								0�� = -0�(�).������
. 

Notice that for obtaining and solving the system with unknown ;�A���,#��, � ∈ 
1,2� 
we have used known properties of Fourier and Laplace transforms [9] along with 

the next relation for image of f.s. which was established by us 7���, �� =
= 7���, ��,���, � ∈ 
1,2�: 
 

 

From equalities (18) and well-known formula for the Fourier-Laplace transform 

of convolution of functions follows that the solution of the system (16)-(17) can be 

written in next form 
 

 

where	N� 		are uniformly parabolic operators, 
 N� = �� −

1

2
3 ℎ��

��
��� ,
���

�,���
 

D�?,
�� = 3 (−1)�
�

���

2@�+����
% 47��?,
�, O�4=�"	

 �O��O, 

 
;�A���,#�� = 2+����
�� + '�� P−7�̅���,#�, 0�2������,#�, 0�

+ FE̅���,#��DE���,#��Q , � ∈ 
1,2�, (18)

 7�R� ��,#�, ��� = -2+����
(�+ '�).��� expS��� 3+��(�)#�+��(�)
���

���

− |��|T 2+����
 (� + '�)U
�
�V . 

 
;���, �′� = 2+��(�)N���, �′�% �?% W−7��� − ?, �� − 
�, 0� × 2���?,
�, 0�

ℝ���

�

�

+ F��� − ?, �� − 
��D(?,
′)<�
�,			� ∈ 
1,2�, (19) 
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and F���, ��� are originals of the functions F�A� ��,#��. We will use next equality to 

find them 
 

F�A� ��,#�� = % exp
−K2� G2+����
��+ '��H��� expX−2 I@�J 2+����
 �� + '��


�

+ @�J 2+����
 (� + '�)LY. 

 

Hence we have 
 

 F���, �′� = % �2% F����, �� − 
�,2�7��2,
���
�
ℝ���




�
,			� ∈ {1,2}, (20)

 

where  
 F����, ��,2� = Γ���, ��,2� = exp Z− � 	#
�

��
��


	��
[ 7����, ��, 0�, 

if		@$�� = 0, F����, ��,2� =
����


��	�

 ��	
\ �? \ Γ��� − ?, �� − 
�,2��#Γ$���?,
�,2��
�

ℝ���

�
� , if @$�� ≠ 0, 

 7�(2,
′)		is a f.s. of uniformly parabolic operator 
 �# −

1

2
3 /��(�)������

�,���
	− 	3 0�(�)�����

���
.	 

 

So we have found the solution of the system of equations (16), (17). Let us es-

tablish the estimation (10). For this purpose we will represent functions ;�, � ∈ 
1,2�,  in a form of a sum of two terms ;�� and ;��, where 
 ;����, ��� = −2+����
	N���, ���% �?% g��� − ?, �� − 
�, 0�2���?,
�, 0��
�,

ℝ���

�

�
 

 

and	;��(�, �′)  is represented by the same formula only we have an integral from the 

product of the kernel F�	and density		D. Let us investigate functions ;�� more pre-

cisely. If we will consider the equality 
 7��� − ?, �� − 
�, 0� = G28+����
�� − ?�H��/� ℎ��� − ?, �� − 
��,	 
 

where ℎ�		denotes a f.s. of the operator N�, then it is easy to obtain next form  

for ;�� 
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After we estimate every term in the right part of (21) using inequalities (9) and 

known estimations for f.s.		ℎ�,� ∈ 
1,2�,		we assure that inequality (10) holds for ;��(�, �′)		with ��, �′� ∈ �0,�< × ℝ���. Similarly one can investigate functions ;��(�, �′),	� ∈ 
1,2�,	and as consequence obtain estimation (10) for them. This 

means that our a priori assumptions on densities ;� , � ∈ 
1,2�, that are included in 

simple layer potential 2��	from (8), holds true. From it and from inequalities (9) 

and (10) follows estimation (6) for the constructed solution of the problem (2)-(5). 

Theorem 1 is proved. 

From Theorem 1 follows that an operator semigroup	�����%�, on functions  ∈ ���ℝ�� can be defined by a relation �� ��� = 2(�, �, ), where the function 2	is defined by formulas (14), (15), (19). Using these formulas and acting like in 

[3, 4, 10], we prove that the semigroup, constructed this way, generates some ho-

mogeneous non-breaking Feller process on ℝ�. Further, an additional investigation 

of the semigroup shows that trajectories of the constructed process can be consid-

ered to be continuous and its transition probability ](�, �,�
)	satisfies the next 

relations: 
 

 

T 8
2+����
U

�
� ;����, �′� = % 1

2
(� − ?)�

$
��? ×

�/�

�
 

(21)

×% ℎ��� − ?, �� − 
��2���?,
�, 0��
� +% 1

2
(� − ?)�

$
��? ×

�

�
�ℝ���

 

×% ℎ��� − ?, �� − 
��(2���?,
�, 0�− 2���?, ��, 0�−
ℝ���

 

−(∇��
� 2���?, ��, 0�,
� − �′))�
� +% 1

2
(� − ?)�

$
�

�

�
�

× 

× �2���?, ��, 0�− 2����, ��, 0���? − G�
2
H��� 2����, ��, 0�. 

 

lim
�↓�

%  ��� 91� % �
 − �, Θ�]��, �,�
�
ℝ�

:��
ℝ�

=

= c(0�, Θ)%  ���, 0����,
ℝ���

 

 

   

 

lim
�↓�

%  ��� 91� % �
 − �, Θ��]��, �,�
�
ℝ�

:�� =
ℝ�

= %  ���(,(�)Θ, Θ)��
ℝ�

+ c(/̅Θ, Θ)%  ���, 0����,
ℝ���
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where Θ ∈ ℝ�,   is an arbitrary continuous compact function on ℝ�, 
 

) =
1

2

9^+��(�) +^+��(�):^+��(�)+��(�)
1�^+��(�) + 1�^+��(�) , 

0� = �0������� ,0�� = 0� ,						� ∈ 
1, … ,� − 1�,									0�� = 1� + 1�, ,��� = ,� , � ∈ 	�, � ∈ 
1,2�, 
/̅ = �/̅����,����

,/̅�� = Z/�� 	,				_`	{�, �} ⊂ 
1, … ,� − 1�	,
0	,			_`		� = �	ab	� = �.

 

 

Equalities (22) means that for the constructed process its local diffusion charac-

teristics exist only as generalized functions, this means that this process is a gener-

alized diffusion process in the sense of Portenko [10]. 

So we have proved next theorem. 

Theorem 2. Let the coefficients of differential operators *�, � ∈ 
1,2�, from (1) 

and *� from (5) satisfy the conditions of Theorem 1. Then an operator semigroup, 

constructed by the solution of the conjugation problem (2)-(5), generates a homo-

geneous continuous Feller process on ℝ� with transition probability that satisfies 

relation (22). 
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