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Abstract.  In this paper the solution of the vibration problem of a non-uniform nanorod is 

presented. The WKB method is applied to solve the equation of motion for free axial  

vibration of the nanorod. 

Introduction  

The vibration analysis of nanostructures has been of great interest because of 

their applications, for example in nanoelectromechanical, nanodevices. The scale 

effect on vibration characteristics of the nanostructures (nanotubes, nanobeams, 

nanorods) is often investigated by using the non-local elasticity theory.  

The axial vibrations of nanorods are induced by the axial external forces. The 

frequencies of the axial free vibration of a nanorod are important parameters which 

characterize the behaviour of this nanorod during the enforced vibration. The axial 

free vibrations of non-uniform nanorods were studied in papers [1-4].  

The small scale effect on vibration of non-uniform nanorods by using the theo-

ry of non-local elasticity was investigated by Chang [1]. The numerical solutions 

was obtained by using the differential quadrature method. The effect of the non-

local long-range interactions on the longitudinal vibration of a nanorod was the 

subject of the paper [2] by Huang. The exact solution of the problem of free and 

forced vibration was determined under the condition of a uniform non-local kernel. 

The axial vibration of a tapered nanorod was studied by Mohammad Danesh et al. 

[3]. The solution of the governing equations of the nanorod vibration was obtained 

by using the differential quadrature method. The same problem was studied by 

Lee, using finite element method. Firouz-Abadi investigated the three dimensional 

free vibration properties of nanocones based on a nonlocal continuum shell model 

and the Galerkin technique [4]. A modified Wentzel-Kramers-Brillouin (WKB) 

method to obtain an asymptotic solution of vibration problem of nanocones was 

applied by Guo and Yang [5]. 

The free vibration of a non-uniform nanorod is the subject of the present paper. 

The solution of the problem was derived by using the WKB method [6, 7]. 
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1.  Formulation of the problem  

The equation of motion for free-vibrating axial non-uniform nanorod in the 

nonlocal elasticity can be written in the following form:   
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where: ( , )u x t - the axial displacement, ( )m x  - the mass per unit length, ( )E x - the 

Young’s modulus, ( )A x is the area of cross-section of the non-uniform and  

non-homogeneous nanorod, 
0
e  is a constant appropriate to each material and a  is 

an internal characteristic size. The function ( , )u x t  satisfies the boundary condi-

tions   

 (0, ) ( , ) 0u t u L t= =   (2) 

2. Solution of the problem 

In order to find the natural frequencies of the nanorod, one assumes a solution 

of the problem in the form:  
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Substituting (3) into Eq. (1) gives:   
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Introducing a new variable 
x

L
ξ =  and assuming  ( ) ( )m Aξ = ρ ξ , 

0
(0)A A= ,  

, constEρ −   in Eq. (4), one obtains: 
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After transformation, Eq. (5) can be written in the form: 
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where:  

( ) ( )
2

2 0
1

e a
p A

L

  
ξ = −Ω ξ  

   
,     ( ) ( )

2

2 0
1 2 '

e a
q A

L

  
ξ = − Ω ξ  

   
 

( ) ( ) ( )
2

2 0
''

e a
r A A

L

  
ξ = Ω ξ − ξ  

   
,     

2 2

2 0

0

A L

EA

ρ ω
Ω =  

In order to use the WKB approximation, the first step is to transfer Eq. (6) by mak-

ing the transformation   

 ( ) ( ) ( )( )U V sξ =Φ ξ ξ  (7) 

where ( ) ( ),   ,    ( ( ))s V sΦ ξ ξ ξ  are arbitrary functions, the Eq. (5) becomes  
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Equating the coefficient of  ( ( ))V s′ ξ  to zero gives an equation for ( ) :Φ ξ   
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The solution of this equation is: 
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Taken into account Eq. (9) in (8), one obtains 
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Let  ( ) ( )
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, then the Eq. (11) can be evaluated as:  
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and  ν - is a large, positive number. 

If ( )F s  is constant the nature of the solution depends on its sign; for positive 

values, ( ) 1F s = , the two linearly independent solutions are the oscillatory func-

tions ( )( ) exp ;V s i sν= ±  for  negative values, ( ) 1F s = − , the solutions are 

( )( ) expV s sν= ±  which change exponentially. These limiting cases suggest ex-

pressing the solution of Eq. (12) in the form: 
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for some function ( ).sΨ  Substituting into equation (12) gives the following non-

linear equations for ( ) :sΨ  
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Since 1ν ≫  an approximate solution is obtained by ignoring the first term, so 

the simplest approximate solutions of equation (14) are 
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Using the WKB method solution of equation (12) may be obtained using the se-

ries expansion 
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Substituting this into (10) and equating the coefficient of  
n

ν
−

 to zero gives an 

equation for ( )
n
sΨ in terms of ( ),     1, 2,.... 1

k
s k nΨ = − . If ( ) 0F s >  we obtain 
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The solutions of the first and second of these equations are              
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The general solution of equation (12) is then as follow: 
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for some constants A, B, C and D.  
 

Inserting the obtained solution (Eq. (18) and (19)) into the boundary conditions 

(0) 0V =    and    (1) 0V =  yields the following set of homogeneous equations (for 

( ) 0)F s >  
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where ( ) ( ) .f s F s ds= ∫  

The non-trivial solutions of this set of equations exist if and only if the determinant 

of the coefficient matrix is zero. This determinant defined a frequency function as 

follows:   
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The roots of equation (21) are called natural frequencies and can be determined 

numerically.      

Conclusions 

Then equation of motion for free-axial vibration of uniform nanorod  was 

solved  with the WKB approximate method. A boundary conditions were applied 

to obtain the natural frequencies which are relevant parameters for the behaviour 

of the tested nanorod. These solutions can be used in numerical frequency analysis 

of the non-uniform nanorods.   
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