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Abstract. In the paper, a 2D domain in which the temperature field is described by the 
Laplace equation and the assumed boundary conditions is considered. To estimate the 
changes of temperature due to the change of  the boundary local geometry, the implicit 
approach of shape sensitivity analysis is used. In the final part of paper, examples of nume-
rical computations are shown and conclusions are formulated. 

Introduction 

The steady state temperature field T(x, y) in a 2D domain is described by the 
Laplace equation 
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where λ  [W/(mK)] is the thermal conductivity, T is the temperature and x, y are the 
geometrical co-ordinates. Equation (1) is supplemented by boundary conditions, in 
particular: 
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where Tb is the known boundary temperature, qb is the known boundary heat flux, 
α [W/(m2 K)] is the heat transfer coefficient and T∞ is the ambient temperature. 

To estimate the changes of temperature due to the perturbation of local geome-
try of the boundary, shape sensitivity analysis is applied [1-5]. Here the implicit 
variant of sensitivity analysis is used. At first, the boundary element method for the 
Laplace equation with linear boundary elements is considered and then the system 
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of algebraic equations is created. Next, this system of equations is differentiated 
with respect to the shape parameter. 

1. Boundary element method 

Application of the boundary element method for the Laplace equation leads to 
the following system of algebraic equations [6-8]:  

 =Gq HT   (3) 

where G and H are so-called influence matrices, T is the vector of boundary tem-
peratures and q is the vector of boundary heat fluxes. 

For the linear boundary elements, the system of equations (3) can be written in 
the form of 
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where R is the number of boundary nodes.  
For single node r being the end of boundary element Γj and being the beginning 

of boundary element Γj+1, one has 
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while for double node r, r + 1 
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where 
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Additionally 
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and 
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where 
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In the above formulas, (1 ) / 2, (1 ) / 2,p kN N= −θ = + θ  [ 1,1]θ∈ −  are the shape 
functions,( , ),  ( , )p p k k

j j j jx y x y are the co-ordinates of the beginning and end of element 
Γj. It should be pointed out that the solution to system (4) allows one to determine the 
“missing” boundary temperatures and heat fluxes. Next, the temperatures in an  
optional set of internal nodes can be calculated using the formula 
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2. Shape sensitivity analysis - implicit differentiation method  

It is assumed that b is the shape parameter, this means b corresponds to the x or y 
coordinate of one boundary node. The implicit differentiation method [3, 9-11] 
consists in the differentiation of the algebraic system of equations (3) and then 
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where: U = DT/Db, W = Dq/Db.  
The differentiation of boundary conditions (2) gives: 
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Hence, this approach of shape sensitivity analysis is connected with the differ-
entiation of the elements of matrices G and H  [8, 12]. 

3. Examples of computations 

A square of dimensions 0.05×0.05 m is considered. The thermal conductivity 
equals λ = 35 W/(mK). On the bottom and left side of the domain, the Dirichlet 
condition T = 400°C is assumed, on the remaining parts of the boundary, the Robin 
condition q = 30(T-20) is accepted. In successive variants of computations, the 
boundary has been divided into 8, 16, 40, 60 and 80 linear boundary elements re-
spectively. The following set of internal points has been taken into account: A = 
= (0.0125, 0.0125), B = (0.0375, 0.0125), C = (0.025, 0.025), D = (0.0125, 0.0375), 
E = (0.0375, 0.0375). 

 

 
Fig. 1. Discretization (N = 40) and position of  internal nodes 

In Table 1, the temperatures at the internal points for different variants of dis-
cretization are presented. 

Table 1 

Temperature at internal points for different variants of discretization 

N TA TB TC TD TE 

8 398.437 395.296 392.922 395.296 386.904 

16 398.388 394.911 393.672 394.911 386.696 

40 398.370 394.817 393.620 394.817 386.653 

60 398.369 394.809 393.616 394.809 386.652 

80 398.368 394.807 393.615 394.807 386.652 
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It can be seen that the internal temperatures for 40, 60 and 80 linear boundary 
elements are close. The temperature distribution in the domain considered is shown 
in Figure 2. 

Next, the shape sensitivity analysis for 40 linear boundary elements has been 
done. Three shape parameters b1, b2, b3 have been taken into account, namely  
b1 = x22, b2 = y22, b3 = x17 as shown in Figure 1.   

 

 
Fig. 2. Temperature distribution 

The distributions of sensitivity functions DT/Db1, DT/Db2 and DT/Db3 are shown 
in Figures 3-5, respectively. 
 

 

Fig. 3. Distribution of  DT/Db1 
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Fig. 4. Distribution of  DT/Db2 

 

Fig. 5. Distribution of  DT/Db3 

Using the expansions of  function T  into the Taylor series 
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one has 
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where ∆b1 is the perturbation of parameter b1, while ∆b2 is the perturbation of pa-
rameter b2. For b1, the value of the sensitivity function equals UC = DTC/Db1 = 
= 186.46; for b2 one has UC = DTC/Db2 = 100.15, while for b3: UC = DTC/Db3 = 
= 193.52. Therefore, under the assumption that ∆b1 = ∆b2 = ∆b3 = 0.0005 m,  the 
change of temperature at node C due to the change of shape parameter b1 and b2 is 
equal to 0.3°C (c. f. formula (19)), while the change of temperature at point C due 
to the change of parameter b3 equals 0.2°C. 

The next example concerns the fragment of a heating panel. The thermal con-
ductivity is equal to λ = 30 W/(mK). The boundary conditions and discretization 
are shown in Figure 6. In Figure 7, the temperature distribution in the domain is 
presented. 

 

 
Fig. 6. Discretization and boundary conditions 

It is assumed that shape parameters b1, b2 correspond to the co-ordinates of 
boundary node 21 (c. f. Figure 6) and then for b1 = x21, one has U28 = 49.42, while 
for b2 = y21: U28 = 306.91.    

Let ∆b1 = ∆b2 = 0.0025 m. Thus, the change of temperature at internal node 
28 due to the change of shape parameters b1 and b2 is equal to 1.78°C (c.f. formula 
(19)). 

Figures 8 and 9 illustrate the distribution of sensitivity functions DT/Db1 and 
DT/Db2, respectively. 
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Fig. 7. Temperature distribution 

 
Fig. 8. Distribution of DT/Db1 

 

Fig. 9. Distribution of DT/D 
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Summing up, the implicit approach of shape sensitivity analysis, coupled with 
the boundary element method is a good tool to estimate the change of temperature 
due to the perturbation of boundary local geometry. 
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