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Abstract. In this paper we consider an ordinary fractioniffecential equation containing
a composition of left and right fractional deriwets. This type of equation is known in
literature as the fractional Euler-Lagrange equmti¥e considered this equation with mul-
tipoint boundary conditions. We proposed a numéscheme using the finite difference
method. In the final part of the paper, examplethefsolutions are shown.

Introduction

In this study the fractional Euler-Lagrange equaiBELE) is considered. This
type of equations is obtained when the minimumoacprinciple and fractional
integration by parts rule are applied. The fradiomperator in this equation con-
tains left and right derivatives simultaneouslystiibuld be noted that many authors
[1-7] elaborated some forms of the FELE.

Fractional differential equations appear naturailya number of fields such as
physics, mechanics, control theory, electrotechrig®engineering, finance theory
and many other disciplines [8-10]. The importardhem is how to find solutions
of the FELE. Using fixed point theorems [5, 6], azen obtain analytical results
represented by a series of alternately left anut figictional integrals and therefore
it is difficult in any practical calculations. Ohd other hand, in references [11-13]
we can find a numerical approach to the solutionrdinary differential equations
with left and right fractional derivatives with tffiest kind of boundary conditions.
In our work, we shall present numerical solutiohghe FELE with a multipoint
boundary condition.

1. Statement of the problem

We consider the following fractional differentiajuation of orden [0 (0, 1) in
time intervalt O [0, b]

°DgDg, f(t)+Af(t)=0 (1)
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where operatorD® are the left and right fractional derivatives ineiRann-
-Liouville (2) and Caputo (3) senses defined a§:[14

D5, £(t)=DIg" f(t) )
°Def(t)=-1;"Df(t) (3)

and operatort® are fractional integrals of ordardefined in [14]:

t
1 I f(T)_udr, fort>0

5= ) iy

4)
b
I f(t)= 1 .[ ) —dt, fort<b
r((x) ('[ t)
The following relation between both definitions é)d (3) takes place [14]:
t—C(
DS f(t)=°Dg, f (t) +———f (0
b 1 (1) =700 1 (1) + gy 10) (5)
Eqg. (1) is supplemented by the multipoint boundaomditions
f(0)=F
(0)=F, o

f(a)=F,, a0(0.b|

2. Numerical solution

Now we present numerical schemes for eq. (1). Wlednce the homogenous
grid of nodes

O=t, <t <t, <..<t <t,, <..<t, &b, t 3 A A DH/N (7)

The value of functiofiat the moment of timgis denoted ag =f (t)).

Next, we determine the numerical schemes for batttibnal operators occur-
ring in eq. (1). The value of the left Riemman-Lydle derivative (2) (internal
operator) at point can be approximated as [11]

o —_ tl_cx
Do f(t)|t=t. =5 ‘I (1-a) {[ t-1)°
t™ 1 i
0f i v J+1 J (8)
‘rl-a) r(-a)s tj t-1)°
—a I-a
_ ti_a 1 = fJ+1 f t _t - ti J+l) _ -a i -
_for(l—a)+r(1— " é =(at) ijv(l,j)
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where
(1-a)i™+(i -0 -t forj =
v(i,j)= (i-j+)™ =2(i —j)™ +(i =j -0 forj =1,.. 71 -2 (9)
( ) 1 forj =i

Denoting by g(t)=Dg, f (t), we can find the discrete form of the compositisn
operators (2) and (3)

o (o] —_ o = _1 tN g'(-[)
CDb— Da+f ( )|t=t‘ - CDb_ g(t)t=t‘ - r(l_a) t (T_t' )u dT
-1 0.9 F 1 10
0 i i d (10)
r(1—ot)jz=i: At J(T‘ti)(x

B e T M R MRS P
r(l-a)< At 1- o =
where
1 forj =i
W(i,j)=—r(21_0() (j=i+0)" =2(j =)™ H{j 4 -2 forj 5 +1,.. N - (11)
(N=-i-2)"" =(N-i)"™ forj =

Using formulas (8) and (10), we can describe ardisdorm of the fractional oper-
ator in eq. (1)

N i
°Dy D3, (1), 0B1)” Z{ ) v(i k) fk} (12)
i k=0
Taking into account eq. (1) with multipoint bounglaonditions (6), we have
f,=F,

(A )Z“ENZ{( )iv( k) f }H\fi:o fori=1,..N-: (13)

k

=0
(1_a—tmjf LA

At At ™R

where m=|_a/At_| -1 and (XW denotes is the smallest integer not less than

In order to obtain the numerical solution of eq, {#e need to solve the system of
algebraic equations (13). If poiatdoes not overlap the node in grid (7) (i.e. the
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point a lies in time interval tf,, tw.1]), then we use linear interpolation which is
determined by the third equation in (13).

3. Examples of computations

In this section we present the results of the calculations obtained by our numeri-
cal approach.

Example 1. In the example, eq. (1) with parameter A = 0 is considered. The analyt-
ical solution of eq. (1) with boundary condition f{b = 1) = 1 is given in form
t) = t° [13]. Assuming the boundary condition as fla = 0.5) = 0.5% we realized the
numerical calculations for N = {32, 64, 128, 256, 512, 1024} and we determined
fv the values (i.e. for ¢t = b). Table 1 presents the values of the numerical errors:
ERR = |(f(b) — fy)|/f(b) for the various values of parameter d. It should be noted that
the numerical errors decrease with an increasing discretization number N.

Example 2. Here we analysed the case of eq. (1) with parameter A = —10. We
simulated the influence of parameter a from the list, a = {0.3, 0.5, 0.7}, on the
solution. We divided time domain ¢ [J [0, 1] into N = 1000 subintervals. Figure 1
shows the solutions of eq. (1) with boundary conditions f{1) = 1 (left-side) and
£(0.5) =1 (right-side).

Table 1

Values of numerical errorsERR

a=0001| a=01 | a=03 | a=05 | a=0.7 | a=09 | a=0.999
N=32 |1.61310° | 1.63710°|4.98910° | 7.928107° | 8.86510° | 4.92810° | 6.13210°°
N=64 |7.93810°|8.00610*|2.43210°| 3.936107° | 4.619107° | 2.76810° | 3.59910°°
N=128 |3.93710° | 3.95710%| 1.198107° | 1.96110° | 2.38610° | 1.52610° | 2.067107°
N=256 |1.96110°| 1.96710* | 5.93710* | 9.78510* | 1.22510°° | 8.29210* | 1.168107°
N=512 |9.785107 | 9.80210° | 2.95310* | 4.88810* | 6.25310* | 4.45510™* | 6.50910°°
N=1024|4.88810" | 4.89210° | 1.47210* | 2.44310* | 3.18010* | 2.37210* | 3.59010°
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Fig. 1. Solutions of eq. (1) witk =-10 and boundary conditiofi@l) = 1 (left-side)
andf(0.5) = 1 (right-side) for different values of paretera
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Example 3. The last example is similar to example 2. We assumed the follow-
ing parameters: a = 0.5, A = =10, ¢ 00 [0, 1], N = 1000. Here we determined the
influence of the changes of boundary conditions on the solution. Figure 2 presents
the solutions of eq. (1) with boundary conditions: f{1) = {0.5, 1.0, 1.5} (left-side)
and f{0.5) = {0.5, 1.0, 1.5} (right-side).

t K
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. Solutions of eq. (1) with=-10,a = 0.5 and variables values of boundary
conditions af(1) (left-side) and(0.5) (right-side)

Conclusions

In summary we proposed the FDM for the FELE with multipoint boundary
conditions. We obtained the FDM scheme which includes one of the boundary
conditions inside of the considered time domain. This approach offers new possi-
bilities in physical processes modelling. Analysing the plots in this work, we ob-
served the occurrence of oscillation for A < 0. We also noted that the numerical
solutions for case A = 0 are convergent to the analytical one.
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