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NUMERICAL SCHEME FOR A TWO-TERM SEQUENTIAL 
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Abstract. A numerical scheme is constructed to solve two-term sequential fractional diffe-
rential equations with the orders of Caputo derivatives in the range (0,1). The proposed 
method is based on a corresponding existence-uniqueness theorem and transformation of 
the SFDE into an equivalent fractional integral equation. Numerical solutions are compared 
to analytical ones in two cases. An example with multiple solutions is also discussed. 

Introduction 

The paper is devoted to the numerical method of solving a certain sequential  
fractional differential equation (SFDE). Such equations in a two-term version were 
studied in paper [1], where existence-uniqueness results were obtained both for 
solutions generated by the stationary function as well as for solutions to the initial 
value problem (IVP). 

Let us observe that fractional differential equations (FDEs) are widely applied 
in modeling many problems in physics, engineering, bioengineering, control theo-
ry, mechanics and  economics [2-7]. In 2010 FDE theory also became an estab-
lished area of mathematics confirmed by the Mathematical Subject Classification 
scheme (MSC 2010). Many methods of solutions, both analytical and numerical, 
have been studied in literature (compare [7-15] and references given therein). We 
discuss in the paper a two-term nonlinear sequential fractional differential equation 
(SFDE). In such equations, the differential operators are compositions of Caputo 
derivatives. The exact solution obtained in [1] is given as a limit of iterations of 
a certain mapping possible to calculate explicitly only in a linear case. Thus, we 
propose to develop a numerical scheme to visualize and compare solutions. 

The paper is organized as follows. In the next section we recall the basics of 
fractional calculus necessary to formulate and solve the problem. We also quote 
two existence-uniqueness results which are the basis of the numerical approach. 
This scheme is given in Section 2 together with examples of numerical solutions. 
Section 3 is devoted to the study of a special case of two-term SFDE, where multi-
ple solutions occur. There the standard numerical approach fails to recover the non-
trivial solution and a certain modification is proposed to overcome this difficulty. 
The improvement, however, requires the knowledge of analytical solutions. This 
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example indicates that numerical schemes based solely on initial conditions can 
give an incorrect result and they should be extended to multiple solutions prob-
lems. The paper is closed with a short conclusion. 

1. Preliminaries 

In this section we recall the basic definitions and theorems from fractional cal-
culus, which we shall apply to formulate and solve a two-term SFDE. The left-
sided Riemann-Liouville integral and Caputo derivative are defined as follows [7, 
16]. 
 

Definition 1.1. The left-sided Riemann-Liouville integral of order ,α  denoted as 
α
+0I , is given by the following formula for :0)( >αRe  
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Definition 1.2. Let ),1()Re( nn −∈α . The left-sided Caputo derivative of order ,α  

denoted as ,0
αcD +  is given by the formula: 
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We shall consider a two-term fractional differential equation in an arbitrary  
finite interval [0,b]  including left-sided Caputo derivatives in a sequential form: 

 2 1
1( ) ( ) ( , ( ))D a D f t t f tα α ψ− =  (3) 

with 
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The full proof of the existence-uniqueness result for the general solution to equa-
tion (3) and for the initial value problem in case )1,0(, 21 ∈αα  are discussed in pa-
per [1]. 

In the transformation of the above equation, we shall apply the following com-
position rule for the Caputo derivative and Riemann-Liouville integral. This rule 
holds for any function continuous in interval [0,b] and we quote it after mono-
graphs [7, 16]. 
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Property 1.3. Let )],,0([ RbCf ∈ and .αβ >  The following equalities hold for any 

point ],0[ bt ∈  

 )()(00 tftfIDc =++
αα

 (6) 

 )()( 000 tfItfID αββαc −
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Assuming nonlinear term ψ to be a jointly continuous function and using the above 
property, we reformulate equation (3) as follows  

 ( )1 2 1 2 1 2
0 0 1 0 0( ) ( ) ( , ( )) 0α α α α α αc cD D f t a I f t I ψ t f t− −
+ + + +− − =  (9) 

provided ].,0[ bCf ∈ The function in the brackets belongs to the kernel of sequen-

tial derivative .2αD  Let us denote this function as 0ϕ  and write the corresponding 
equation for the stationary function 
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which leads to the explicit formula 
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when the respective orders fulfill the conditions:  

 1 1 1( 1, )n nα ∈ − and ),1( 2,12,112 nn −∈−αα  

Equation (9), rewritten using stationary function (15), becomes the fractional inte-
gral equation: 

 2 1 2
1 0 0 0( ) ( ) ( , ( )) ( )f t a I f t I t f t tα α α ψ ϕ−

+ += + +  (12) 

which coincides with the following fixed point condition 
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for mapping 
0ϕT generated by stationary function .0ϕ  

Assuming function ([0, ] , )C b R Rψ ∈ ×  and observing that stationary function 

0ϕ  is continuous in interval [0,b], we conclude that mapping 
0ϕT  transforms any 

continuous function into its continuous image. 
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The presented transformation of the FDE given in (3) into fixed point condition 
(13) allows us to formulate the existence-uniqueness result for a solution to equa-
tion (3) (compare [1]). 
 

Proposition 1.4. Let 12 αα >  and function ),],0([ RRbC ×∈ψ  fulfill the Lipschitz 

condition Ryxbt ∈∈ ∀∀ ,],,0[ : 

 yxMytxt −⋅≤− ),(),( ψψ  (14) 

Then, each stationary function of derivative 2αD , given in (11) and fulfilling con-
dition 000

ϕϕϕ ≠T , yields a unique solution of equation (3) in the space of functions 

continuous in interval  [0,b]. Such a solution is a limit of the iterations of mapping 

0
:Tϕ  
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whereχ  is an arbitrary continuous function. 

The solution given in Proposition 1.4 depends on 2,11 nn + constants. It corre-

sponds to the general solution known in the classical theory of differential equa-
tions. These constants can be fixed using initial or boundary conditions. In the next 
proposition we describe a solution to an IVP (initial value problem) in the case 
when orders )1,0(, 21 ∈αα . 
 

Proposition 1.5. Let the assumptions of Proposition 1.4 be fulfilled and 
)1,0(, 21 ∈αα . Then, the unique solution of equation (3) obeying the initial condi-

tions: 
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exists in the ],0[ bC  space. Such a solution is a limit of the iterations of mapping 

0ϕT  generated by the following stationary function 
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2. Numerical scheme for two-term sequential FDE 

For many science problems, where  fractional differential equations (FDEs) are 
applied in modeling, coming up with the exact solution analytically is difficult. 
Therefore it is necessary to construct and use numerical methods. 
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In the paper we use a modification of the fractional Adams-Bashforth-Moulton 
method proposed by Diethlem in [8]. The Predictor-Corrector method is an algo-
rithm that proceeds in two steps. First, the prediction step calculates a rough  
approximation of the desired quantity. Second, the corrector step refines the initial 
approximation using another means. 

2.1. Adams-Bashforth-Moulton scheme for two-term SFDE 

We consider the equation 

 ))(,()()( 12
1 tfttfDaD ψαα =−  

with initial conditions 

 100 )0(,)0( 12 wfDwf c == −
+
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  (18) 

for )1,0(, 21 ∈αα , 12 αα > . Assume that we are working on a uniform grid 

 bttttt Njj =<<<<<<= + ......0 110  

with an integer N, h = b/N and .hjt j =  

By applying Property 1.3 we can convert initial value problem (18) for differential 
equation (3) into equivalent integral equation (12): 
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The resulting value, P
kf 1+ , is called the predictor. 

Now, for equation (12) we can write the indirect one step Adams-Moulton scheme, 
using the product trapezoidal quadrature formula to replace integrals. If we replace 

the value of 1+kf  by P
kf 1+ in node 1+kt , then we obtain the formula: 
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where 
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2.2. Numerical examples 

As an example, we shall discuss three variants of equation (3). For equations 
discussed in the first and second example, we can determine the analytical solu-
tions. In the third case we present only a numerical solution. 
Example 2.1. Consider the following simple version of  equation (3): 

 2 ( )D f t tα β=  (23) 

with initial conditions 

 2 1
0(0) 0, (0) 1cf D fα α−
+= =  (24) 

for 3.01 =α , 7.02 =α , 2=β . 
Using analytical manipulations, we obtain the exact solution: 

 
2.7 0.4(3)

( )
(3.7) (1.4)

t t
f t

Γ= +
Γ Γ

 (25) 

The function on the right-hand side of equation (23) clearly fulfills the Lipschitz 
condition. From formula (17), we determine the stationary function:     
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We explicitly check condition 000
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Table 1 shows the run time and percent age of error dependent on the step size.  
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Table 1 

Error of Adams-Bashforth-Moulton method for Example 3.1 

Step size Min Percent Error Avg Percent Error Max Percent Error Run time 

1 0.371402 2.66616 10.4469 0.015 s 

1/10 0.00376718 0.0321951 0.120384 0.686 s 

1/20 0.000943073 0.00813277 0.0304244 2.715 s 

1/50 0.000151046 0.00131046 0.00490237 16.895 s 

1/100 0.000037778 0.000328532 0.0012293 68.001 s 

 

 
Fig. 1. Exact and numerical solution for Example 3.1 

Analyzing Figure 1, we observe the high precision of numerical solutions even for 
the largest step size h = 1. 
 

Example 2.2. Consider the linear case of equation (3): 

 2 ( ) [ ( )]D f t f tα β=  (27) 

with initial conditions 

 2 1
0(0) 1, (0) 0cf D fα α−
+= =  (28) 

for ,3.01 =α ,5.02 =α  .1=β  
The exact solution of equation (27) is the following one-parameter Mittag-Leffler 
function [10]: 

 0.5
0.5,1( ) ( )f t E t=  (29) 

The function on the right-hand side of equation (27) fulfills the Lipschitz condition. 
From formula (17) we determine the stationary function: 

 1)(0 =tϕ  (30) 
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We check whether the above stationary function fulfills condition 000
ϕϕϕ ≠T : 
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Table 2 shows the run  time and percent age of error dependent on the step size. 
 

Table 2 

Error of Adams-Bashforth-Moulton method for Example 3.2 

Step size Min Percent Error Avg Percent   
Error 

Max Percent 
Error 

Run time 

1 60.456 81.5797 95.5736 0.016 s 

1/10 3.6101 11.3189 19.4923 0.687 s 

1/20 1.7513 4.76766 10.0607 2.637 s 

1/50 0.45256 1.28408 5.93306 16.271s 

1/100 0.162002 0.465502 4.12629 64.6 s 

1/200 0.057387 0.166854 2.84665 267.99 s 

 

 
Fig. 2. Exact and numerical solution for Example 3.2 

Example 2.3. Consider the following nonlinear case of equation (3): 
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1 2
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with initial conditions 
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Before we present the numerical results, we shall prove that the function on the 
right-hand side of equation (31) fulfills the Lipschitz condition: 
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We found Lipschitz constant M = 1 and this ends the proof. 
The stationary function for equation (31) and initial conditions (32) looks as fol-
lows: 
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and it fulfills condition .000
ϕϕϕ ≠T  

The complicated form of equation (31) makes it difficult to calculate an analy-
tical solution. Therefore, we are looking only for approximate solutions. The re-
sults presented in Figures 3 and 4 were obtained for step size h = 1/50. 
 

 
Fig. 3. Numerical solution for α2 = 0.8, a1 = −1 
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Fig. 4. Numerical solution for α1 = 0.2, α2 = 0.8 

3. Example of IVP problem with 
0ϕϕϕϕ ϕ ϕϕ ϕϕ ϕϕ ϕ0T =  

The initial value problem may have a unique solution, or more than one solu-
tion.  
In this section, we consider a two-term SFDE for which the solution is determined 
by the stationary function  with property 000

ϕϕϕ =T . We derive the exact form of  

two solutions satisfying the given initial conditions. Next, we will show how to 
modify the Adams-Bashforth-Moulton algorithm to determine a non-zero solution. 

3.1. Analytical solution 

Consider equation: 

 2 ( ) [ ( )]D f t f tα β=  (33) 

with 1β ≠  and initial conditions 

 2 1
0(0) 0, (0) 0cf D fα α−
+= =  (34) 

For the above initial conditions, stationary function 0( ) 0tϕ =  and 

 )()()]([)( 00000
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0
tttItT ϕϕϕϕ βα
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contradict condition 000
ϕϕϕ ≠T , hence we conclude that equation (33) has more 

than one solution. 
Let us assume that the solution of equation (33) is of the form 
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 ( )f t Ctγ=  (36) 

Incorporating function (36) into equation (34) we obtain the condition 

 2D Ct C tα γ β γβ=    (37) 

and solving equation (37) we arrive at the relations 
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Finally, we obtain two solutions to IVP (33), (34) 
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and 0)( =tf . (41) 

3.2. Numerical solution 

For equation (33) with initial conditions (34) and 7.02 =α , 5.0=β , the Adams-
Bashforth-Moulton scheme described in (19), (21) yields only a zero solution. This 
is due to the construction of the predictor which depends solely on the initial condi-
tions and function  .0))(,( 0 ≡tt ϕψ   

Table 3 

Error of Adams-Bashforth-Moulton method 

Step size Avg Percent   Error Run time 

1 7.26384 0.016 s 

1/10 1.64206 0.812 s  

1/20 0.96173 3.094 s 

1/50 0.45928 19.156 s 

1/100 0.25788 76.203 s 
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In the previous subsection, we derived the exact form of the non-vanishing solu-
tion. Now we use it to set an additional condition: )(1 hff = , where f is given by 
(40). Figure 5 and Table 3 show the nonzero solution of equation (33) determined 
by the Adams-Bashforth-Moulton scheme modified by the additional condition.  

 

 
Fig. 5. Numerical solution for α2 = 0.7, β = 0.5 

Conclusions 

We constructed and discussed the numerical scheme to solve the initial value 
problem for a two-term SFDE with orders of derivatives fulfilling condition 

)1,0(, 21 ∈αα . It is a variant of the Adams-Bashforth-Moulton method and as such, 
strongly depends on the properties of the stationary function generating the particu-
lar solution. The scheme was validated by comparison of the analytical and nume-
rical solutions in two cases and then applied to a certain nonlinear SFDE. It will be 
further extended to multi-term SFDEs and improved with a more detailed error 
analysis and derivation of the experimental range of convergence (EOC). We 
should also point out that the example studied in Section 3 shows that in the case 
when a given SFDE has multiple solutions, the numerical scheme in the present 
form allows one only to derive a trivial solution which coincides with the station-
ary function. Thus, further investigation should also include extension of the me-
thod so as to derive non-trivial solutions. 
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