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Abstract. A numerical scheme is constructed to solve two-teenuential fractional diffe-
rential equations with the orders of Caputo deivest in the range (0,1). The proposed
method is based on a corresponding existence-umégsetheorem and transformation of
the SFDE into an equivalent fractional integralatean. Numerical solutions are compared
to analytical ones in two cases. An example witlitiple solutions is also discussed.

I ntroduction

The paper is devoted to the numerical method ofirepla certain sequential
fractional differential equation (SFDE). Such eduad in a two-term version were
studied in paper [1], where existence-uniquenessltse were obtained both for
solutions generated by the stationary function ek as for solutions to the initial
value problem (IVP).

Let us observe that fractional differential equasi¢FDES) are widely applied
in modeling many problems in physics, engineerbigengineering, control theo-
ry, mechanics and economics [2-7]. In 2010 FDEthealso became an estab-
lished area of mathematics confirmed by the MathmaaSubject Classification
scheme (MSC 2010). Many methods of solutions, lotalytical and numerical,
have been studied in literature (compare [7-15] ifidrences given therein). We
discuss in the paper a two-term nonlinear sequdrdietional differential equation
(SFDE). In such equations, the differential opesatre compositions of Caputo
derivatives. The exact solution obtained in [1higen as a limit of iterations of
a certain mapping possible to calculate expliaithly in a linear case. Thus, we
propose to develop a numerical scheme to visuahgecompare solutions.

The paper is organized as follows. In the nextiseatve recall the basics of
fractional calculus necessary to formulate andesthe problem. We also quote
two existence-uniqueness results which are theslzsthe numerical approach.
This scheme is given in Section 2 together withngXas of numerical solutions.
Section 3 is devoted to the study of a special casso-term SFDE, where multi-
ple solutions occur. There the standard numerigataach fails to recover the non-
trivial solution and a certain modification is poged to overcome this difficulty.
The improvement, however, requires the knowledgaradlytical solutions. This
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example indicates that numerical schemes basety smieinitial conditions can
give an incorrect result and they should be extdrtdemultiple solutions prob-
lems. The paper is closed with a short conclusion.

1. Preliminaries

In this section we recall the basic definitions d@imelorems from fractional cal-
culus, which we shall apply to formulate and sadvéwo-term SFDE. The left-
sided Riemann-Liouville integral and Caputo deifixatare defined as follows [7,
16].

Definition 1.1. The left-sided Riemann-Liouville integral of order denoted as
lo. » is given by the following formula foRe(a) > O:

1 .[ f (u)du (1)

510 =

Definition 1.2. Let Re(@)d(n—1,n). The left-sided Caputo derivative of order

denoted asDy,, is given by the formula:

toc(n)
o 1 If (Wdu @)

* T (n-a) ) (t-uy ™

We shall consider a two-term fractional differehtiguation in an arbitrary
finite interval [0,b] including left-sided Caputierivatives in a sequential form:

(D% —aD™) f (1) =¢(t, f (1)) 3)

with
D™ f (t) :="Dy2 4)
D™ f (t) =D "D f (1), a,>a, (5)

The full proof of the existence-uniqueness resuitthe general solution to equa-
tion (3) and for the initial value problem in cagga, [ (01) are discussed in pa-
per [1].

In the transformation of the above equation, wdl stpgply the following com-
position rule for the Caputo derivative and Riemaiouville integral. This rule
holds for any function continuous in interval [0&hd we quote it after mono-
graphs [7, 16].
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Property 1.3. Let f OC([0,b], R) and 8 >« . The following equalities hold for any
point t 0 [0,b]

‘DI, f(t)=f(t) (6)

°Dg 1L (1) =147 1(0) (7)

Assuming nonlinear termp to be a jointly continuous function and using ét@ve
property, we reformulate equation (3) as follows

Dg DG (1) —al g7 f (1) ~ 15 (t, £ (1))) =0 (9)

providedf OC [0p ].The function in the brackets belongs to the keofiedequen-

tial derivative D*2. Let us denote this function a& and write the corresponding
equation for the stationary function

D2 (¢(t) = "D “Doz “*(4(t)) =0 (10)
which leads to the explicit formula

ne-1 c, KL m-1 d fez-auti

%0= 2 71+ AT, e oD

(11)
when the respective orders fulfill the conditions:
aU(n- Ln)anda, -a;0(n, —1n;,)

Equation (9), rewritten using stationary functidb), becomes the fractional inte-
gral equation:

f(t) =algz ™ f(t) +152(t, (1)) + (1) (12)
which coincides with the following fixed point catidn
ft)=T, f(t) (13)

for mappinng,,0 generated by stationary functigfy.

Assuming functiony OC([0,b¥ R, R) and observing that stationary function
@, is continuous in interval [B], we conclude that mappin'@% transforms any
continuous function into its continuous image.
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The presented transformation of the FDE given nif fixed point condition
(13) allows us to formulate the existence-unigusmesult for a solution to equa-
tion (3) (compare [1]).

Proposition 1.4. Let a, > a; and functiony O C([0,b] x R,R) fulfill the Lipschitz

condition Oy yo O, yor:

Wt ¥) -wt.y)|<Mix-y (14)

Then, each stationary function of derivatifz€? , given in (11) and fulfilling con-
dition T, @, # ¢, yields a unique solution of equation (3) in theee of functions
continuous in interval [0,b]. Such a solution ibnait of the iterations of mapping
T

¢

FO) =1lim (T,,)“x () (15)

wherey is an arbitrary continuous function.
The solution given in Proposition 1.4 dependsmr n,,constants. It corre-

sponds to the general solution known in the classheory of differential equa-
tions. These constants can be fixed using initiddaundary conditions. In the next
proposition we describe a solution to an IVP (alittalue problem) in the case

when ordersy,,a, 0 (01) .

Proposition 1.5. Let the assumptions of Proposition 1.4 be fulfilleand
a,,a, (01 . Then, the unique solution of equation (3) obeyimg initial condi-
tions:

f(0) =wy, DeZ f(0)=w, (16)

exists in theC [0y ]space. Such a solution is a limit of the iteradiaf mapping
Ty, generated by the following stationary function

-

(W — 3wy )t
MNa,-a,+1])

Po(t) = + 17)

2. Numerical schemefor two-term sequential FDE
For many science problems, where fractional défiéal equations (FDEs) are

applied in modeling, coming up with the exact dolutanalytically is difficult.
Therefore it is necessary to construct and use ricahenethods.
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In the paper we use a modification of the fractiohdams-Bashforth-Moulton
method proposed by Diethlem in [8]. The Predictorf€ctor method is an algo-
rithm that proceeds in two steps. First, the ptamlicstep calculates a rough
approximation of the desired quantity. Second,direector step refines the initial
approximation using another means.

2.1. Adams-Bashforth-M oulton schemefor two-term SFDE

We consider the equation
(D% —aD*) f (1) =y (t, T (1))
with initial conditions
f(0)=w, D2 (0)=w, (18)
for ay,a, 0 (01 ,a, > a,. Assume that we are working on a uniform grid
0=ty <t <..<t; <t;; <..<ty =b

with an integeN, h= b/N andt; = jh.

By applying Property 1.3 we can convert initialualproblem (18) for differential
equation (3) into equivalent integral equation (12)

f(t) =alor ™ f(t) + g2y (LF (1)) + o (1)

Using the rectangle rule, we can calculate appration f,, = f (t,.,)

k

fP :L b(az—al) ) b(a2) t f + 19
k+1 I—v(% _a’l) = jk+1 J I—v( Z)Z k+ll//(] i ) ¢0(tk+1) ( )

where
h . )
bfill=;(<k+1—nﬁ -k =j)) (20)
2

The resulting valuef,”, , is called the predictor.

Now, for equation (12) we can write the indirecemtep Adams-Moulton scheme,
using the product trapezoidal quadrature formuleefdace integrals. If we replace

the value off,,, by f,",in nodet,,,, then we obtain the formula:

floa = r(a —a) 4 Zaﬁ?;f v fi + 21_J<a+% i+
Lo (21)
"oy M (a,) 2, ) + Attt (o 100 + Oolt)
2/ j=0
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where
W .
kP = (k = B)(k +1f° =0
,3(,6’+1)( (k=B)(k+1)) j
M _ +1 _i\ftl
an, =\ gpen K1+ kD) (22)
-2k -j +1F") 1<j <k,
i =k +1
B(B+1) R

2.2. Numerical examples

As an example, we shall discuss three variantsgofton (3). For equations
discussed in the first and second example, we eserrdine the analytical solu-
tions. In the third case we present only a numkesiakation.

Example 2.1. Consider the following simple version of equat{8jt

D% f (t) =t* (23)
with initial conditions
f(0)=0, ‘Dz ™f (0)=1 (24)

fora, =03,a0,=07, f=2.
Using analytical manipulations, we obtain the exsmttition:

_r@f7+t“
T r@37) ra4

f(t) (25)

The function on the right-hand side of equation) (@2arly fulfills the Lipschitz
condition. From formula (17), we determine theistary function:

t 04

%mzraq

(26)

We explicitly check conditior, @, # ¢

=g, (1)

t0.4 t0.4 t0.4

red)) r (l.4)¢l' @.4)

Table 1 shows the run time and percent age of dependent on the step size.
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Table 1
Error of Adams-Bashforth-M oulton method for Example 3.1
Step size Min Percent Erro Avg Percent Error ~ MaxcBnt Error Run time
1 0.371402 2.66616 10.4469 0.015s
1/10 0.00376718 0.0321951 0.120384 0.686 5
1/20 0.000943073 0.00813277 0.0304244 2.715 4
1/50 0.000151046 0.00131046 0.00490237 16.895(s
1/100 0.000037778 0.000328532 0.0012293 68.001|s
£(t)
Step size |
200
150 | Exact solution
100 |
50
t
2 4 6 8 10

Fig. 1. Exact and numerical solution for Example 3.

Analyzing Figure 1, we observe the high precisibnumerical solutions even for
the largest step size= 1.

Example 2.2. Consider the linear case of equation (3):

D% f (t) =[ f(1)]P (27)

with initial conditions

f(0)=1, D2 f (0)= 0 (28)

fora, =03 a,=05 g=1
The exact solution of equation (27) is the follogvione-parameter Mittag-Leffler
function [10]:

f(t) = Bpsa(t™®) (29)

The function on the right-hand side of equation) f&ffills the Lipschitz condition.
From formula (17) we determine the stationary fionct

Po(t) =1 (30)
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We check whether the above stationary functiorilsifondition T, @, # ¢,

Ty, Po(t) = lgz1+1#1=gy(t)

Table 2 shows the run time and percent age of dependent on the step size.

Table 2
Error of Adams-Bashforth-M oulton method for Example 3.2
Step size Min Percent Error Avg Percent Max Percent Run time
Error Error
1 60.456 81.5797 95.5736 0.016 s
1/10 3.6101 11.3189 19.4923 0.687 s
1/20 1.7513 4.76766 10.0607 2.637s
1/50 0.45256 1.28408 5.93306 16.271s
1/100 0.162002 0.465502 4.12629 64.6 s
1/200 0.057387 0.166854 2.84665 267.99 s
f(t)
[[|| cmmmmname Step size 1/10
15000 |
Step size 1/20
|| — Exact solution
10000 |
5000j
t
2 4 6 8 10
Fig. 2. Exact and numerical solution for Examp[2 3.
Example 2.3. Consider the following nonlinear case of equat@n (
f(t)sin(
(D% -aD™) (1) =+ o) (31)
(f(t)" +1

with initial conditions

f(0)=1, D2 f (0)=1 (32)
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Before we present the numerical results, we shaNethat the function on the
right-hand side of equation (31) fulfills the Lifstz condition:

_|xsin¢) _ysin¢) _

|‘//(tnx)_¢/(t1Y)|-| X2+1 y2+l|_

[xy? +x=y —y| _|(y =x)(yx -1)|
| OC+1)(y? +1) | [P +1)(y> +1)

=|sintt )

MY +1
X2+y2 +X2 +1_

_ yx-1
=X = Y|——"——|<|x —
| y"(yz e+ Yy
2
X-y| Yy +x +1 <|x
VX +y?+x2 +1
We found Lipschitz constant M = 1 and this endspitumf.

The stationary function for equation (31) and alittonditions (32) looks as fol-
lows:

g

—y

taz_al

$o(t)=1-(Q- %)m

and it fulfills conditionT, @, # ¢,.

The complicated form of equation (31) makes iticlift to calculate an analy-
tical solution. Therefore, we are looking only fapproximate solutions. The re-
sults presented in Figures 3 and 4 were obtainestép size h = 1/50.

f(t)

]
'Sy
(=)}
%)
=

Fig. 3. Numerical solution fax2 = 0.8, al =1
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Fig. 4. Numerical solution faxl = 0.2,a2 = 0.8

3. Example of IVP problem with T, ¢, = ¢

The initial value problem may have a unique sohytior more than one solu-
tion.
In this section, we consider a two-term SFDE foraktthe solution is determined

by the stationary function with properfly @, =@, We derive the exact form of

two solutions satisfying the given initial condit& Next, we will show how to
modify the Adams-Bashforth-Moulton algorithm to el@hine a non-zero solution.

3.1. Analytical solution
Consider equation:
D% f(t) =[ f(0)]* (33)
with B #1 and initial conditions
f(0)=0, ‘Dz f (0)=0 (34)
For the above initial conditions, stationary funatig,(t) =0 and
Ty, 8o (1) = 152 [Bo(D)]7 + B5 (1) = #o (1) (35)

contradict conditionT¢O¢0 # @,, hence we conclude that equation (33) has more

than one solution.
Let us assume that the solution of equation (38j the form
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f(t)=Ct’ (36)
Incorporating function (36) into equation (34) waain the condition
D%Ct" =CA» 37)
and solving equation (37) we arrive at the relation

a,

1-5

y= (38)

and
c=C*? ry+1- o) (39)
My+1)
true for C=0 andC=[I(y+1-a,) / T(y+1J'+#»
Finally, we obtain two solutions to IVP (33), (34)

1

r(azﬁ +1j .
1-8 :

r[azﬂ+1+a2J

-8 (40)

f(t)=

and f(t)=0. (41)

3.2. Numerical solution

For equation (33) with initial conditions (34) amd = 0.7, 5 =0.5, the Adams-
Bashforth-Moulton scheme described in (19), (2&)ds only a zero solution. This
is due to the construction of the predictor whielpehds solely on the initial condi-
tions and functiong/(t, g,(t)) = 0.

Table 3
Error of Adams-Bashforth-M oulton method

Step size Avg Percent Erro Run time
1 7.26384 0.016s
1/10 1.64206 0.812s
1/20 0.96173 3.094 s
1/50 0.45928 19.156 s
1/100 0.25788 76.203 s
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In the previous subsection, we derived the exaat fof the non-vanishing solu-
tion. Now we use it to set an additional conditidp:= f (h) , wheref is given by

(40). Figure 5 and Table 3 show the nonzero saiutibequation (33) determined
by the Adams-Bashforth-Moulton scheme modifiedH®y additional condition.

fir)

. Step size 1/20

Exact solution

2 4 6 8 10
Fig. 5. Numerical solution faxr2 = 0.7, = 0.5

Conclusions

We constructed and discussed the numerical scherselte the initial value
problem for a two-term SFDE with orders of deriva fulfilling condition

a,a, 001 . Itis a variant of the Adams-Bashforth-Moultonthmd and as such,

strongly depends on the properties of the statjoharction generating the particu-

lar solution. The scheme was validated by compar@éfahe analytical and nume-

rical solutions in two cases and then applied ¢ergain nonlinear SFDE. It will be

further extended to multi-term SFDEs and improvathva more detailed error

analysis and derivation of the experimental rangecanvergence (EOC). We

should also point out that the example studieddatiBn 3 shows that in the case
when a given SFDE has multiple solutions, the nicakscheme in the present
form allows one only to derive a trivial solutiorhieh coincides with the station-

ary function. Thus, further investigation shouldalinclude extension of the me-
thod so as to derive non-trivial solutions.
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