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Abstract. In this paper, the solution of a class of timecfi@nal differential equations by

using Green’s function method is presented. Grefmstions by using the Laplace trans-
formation with respect to the time variable and tiethod of eigenfunction expansion with
respect to space variables are derived. An analyfiicm of the solution to the problem in
rectangular, polar and elliptical coordinates hesrbgiven.

Introduction

The theory of differential equations of non-integeder is widely used in mod-
eling various physical processes [1, 2]. If possiltihe analytical methods to solve
initial-boundary problems with differential equat®of non-integer order are ap-
plied and in particular Green’s function methodsed.

Green’s functions for fractional differential opens are of great interest to
many authors (for instance the book by Podlubnyaf8] papers [4-6]). Fractional
Green’s functions for linear many-term fractionadler differential equations with
constant coefficients are presented in book [3]e Hxplicit representation of
a Green’s function for a space-time fractionaldifbn equation is given in paper
[4]. Fractional Green’s function associated witle tinactional reaction-diffusion
equation is considered in [5]. The fundamental twhufor a fractional diffusion-
wave equation is derived in paper [6]. Papers [deBicern one dimensional prob-
lems.

Here we propose the application of Green’s functiwthod to problems with
partial differential equations including a Caputridative with respect to the time
variable and standard Laplace operator with resfzecpace variables. Green’s
functions in the form of a series of eigenfunctiofis Laplace operatan rectan-
gular, polar and elliptical coordinates are detesdi Special cases of the present-
ed fractional Green’s function are Green’s functidor a parameter denoting the
order, which tends to an integer number. The obthi@reen’s functions in these
cases agree with standard Green'’s functions [7, 8].
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Problem formulation

The derivative of fractional-order of function g(t) in the sense of Caputo is
defined by

oDl =y (-2 a e )ar &

wheren = [a] + 1, [a] denotes the integer part af In this paper we consider
partial differential equations with a fractionader derivative in the following
form

oDf -’ @=f 2)

where 02 is the Laplace operator aeds a real coefficient. This equation com-
pleted with initial and boundary conditions will bensidered in rectangular, polar
and elliptical coordinates. Note that equationf(®)a = 1 is the standard diffusion
equation and foo = 2 it is the standard wave equation.

In order to determine the solution of equation (&)the first step we use the
Laplace transform with respect to theariable. For functiori(t) and its Laplace

transform f (s) we have
L[HE)] = F(9)= [e t()at, L{F(s] = £ ) :iy]“’ést f(s)ds @3)

2mi 5,

wheresis a complex parameter. Moreover, we have [3]

LDt ()] =5 7(9)- 3 s+ 1 0(o7) 4)

k=0

Taking the Laplace transform in equation (2) ansuasng zero initial condi-
tions, we obtain

[s”—cZDZ] o=f (5)
The solution of equation (5) can be presentedérfaHowing form

®(s,x)= [ f(s.8)G(s,x;7.&)de (6)

where G is the Laplace transform of Green’s function, whiatisfies the follow-
ing differential equation

[s"’ —CZDZ] G(s,x,7,&)=e"3(x-¢) 7)
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where J(0) is the Dirac delta function. FunctioB satisfies the same boundary

conditions as functior®. The solution of equation (2) on the basis of¢éh be
obtained in the form of

txzhft—ug G(t,x;u,&)ds du (8)

Our aim is firstly to derive the Laplace transfooGreen’s functionG and next
Green’s functiorG.

Rectangular coordinates

Consider equation (7) in a rectangle={(x,y): 0< x<a,0< y<b}. In this
case, the rectangular coordinates are appliedrantaplace transform of Green’s
0° 62

function is a solution of equation (7) with? = >+ . We assume that at
X

the boundary of rectangl®, the Dirichlet conditions are satisfied

=0 9)

x=0

- 6[,,=6]
x=a y=0 y=b

In order to solve equation (7) with boundary coiadis (9), we consider at first
the eigenproblem

020(x, y) = -a? &(x, y) (10)

?(0,y)=@(a,y)=0, @(x,0)=®(x,b)=0 (11)

Eigenvaluesw,,, and eigenfunctiong_ (x,y) are

2 2
W = (@J +(mﬂyj Ok y)=sin T sin ™Y n=1,2,. (12)
a b a b

We seek the solution to boundary problem (7), #@he form of a double series of
eigenfunctions:

0 00

G(s,x,Y:T, )= A®, X y) (13)

n=1m=1
We determine coefficients\,, by substituting functiorG given by (13) into
equation (7), multiplying both sides of the equatlyy @, (x, y) and integrating

with respect tox andy in intervals [0a] and [Ob], respectively. Using the orthogo-
nality condition we obtain:
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4D, (%, y)Pa(E1)
abls” +c?af,) ) -

A =

As a result, we have the Laplace transform of Gsemction in the following
form:

— . >, e . mirx . miré . NIy . Ny
Gls,x,y,r,&,n)=— sin sin sin sin 15
(s.xyir.€11) abigs” +c’af a a b b (15)

Finally, Green’s function, as an inverse transfofil5), has the form of

a-1
G(t.xy:7.én) :%z E, . (—czwnﬁn (t —r)”) sin m;TX sinmgfsinngy sinnbry
n=1

(16)
wheret >7 and E, 4(z) is the Mittag-Lefler function defined by [3]:
E.p(2)=3 = ar
= (an+pB)

Polar coordinates
Differential equation (5) in a circular/annular i@y should be written in polar
coordinates. This equation for Green'’s function th@sfollowing form:

[s" - c? DZ] G(s,r.o,r,p,0)= M Ap-06)e® (18)

where 2 =i+li +ii Equation (18) obliges in the circle region:
ar2 ror 294 '
r <b. We assume the Dirichlet condition on the boundiaa&y@‘r:b =0. We find
the solution of this equation in the form
G(s.r.@1.0.0)= Y g,(s.r:7, p)cosm(g-6) (19)

m=—o

where functionsg,, (s,r;7, o) satisfy the equation

{SH_CZ( s _mzﬂ g (s.rir,p) =20 =P grs (20)

ar2 raor r? 27r

We seek a solution of equation (20) in the ser@mfof eigenfuctions of the
following problem:
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d> 1d m
(W +o —r—zJ v (1)=-a?¥ (r), ¥ ()<+w for 0O<sr<b, @ (b)=0
(21)

The solutions to this eigenproblem create a seguehfunctions
Yo (1) = (@it ) (22)

where J,, are Bessel functions of the first kind of ordarand w,,, (m - integer,
n - natural) are the roots of equation

JIml@nib)=0. (23)
Next we assume that
0n(S1:7.0)= Y Apn A ) - (24)
n=1

Substituting series (24) into equation (20) andhgishe orthogonality condition of
functions (22) in interval [®], we obtain coefficientsA,,, in the form of

‘Jm(/]mnp‘) e

A R T .
where
b
Ay = 272[ 1 32 (@ Jar = 7707 32 (@) (26)
0

Finally, taking into account equations (19) and)(225), the Laplace transform of
Green’s function is

G : -y v b i -
G(s,r.g1,p,6)= m;o nzi‘?.dmn 3 (@t )3, (o) T cosm(p-6) (27)

Hence, Green’s function has the form

G(t,r.¢1,p,6)
a—. — — Jm mn Jm mn a (28)
- 77'][-)2 (t B T) 1m:—oo nzz‘i (a)\]lzr(lmnlgc){) p) Ea’a (_ Czaﬁm (t ) T) )Cosm((o_ 0)

Elliptical coordinates
Differential equation (5) in an elliptical spacenda@in we write in the elliptical
coordinates. This equation has the following f¢&in
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5,(5_ Z)J(” - 9) ve’s

o_ 22l = . =
[s ¢’ ]G(s"(”’r’(’g) h?(costt & - cos’ )

(29)

where 02 =

1 0>  0° : o :

f 3 + . The equation obliges in the ellip-
h?(costt & - cog /7)[652 anzj q J P
tical region: £ < &,, where ¢, =arctgh§, a and b are half axes of the ellipse

which is the edge of the region. We assume theblat condition on the bounda-
ry, i.e. 6‘{_5 =0.
=60

We seek the Laplace transform of Green’s fundticthe form of a series:

Gls.£77.0.6)= 33 Au @n(E1) (30)
where
®n(E077) = Me (€, A ) e (7, G ) (31)

are the eigenfunctions of the problem presentgaaper [8],q,,, are roots of the
equation which follows from boundary condition

Me, (&, Gnn) = 0. (32)

The angular and radial Mathieu function®,,(7,q) and Me,,(77,q) were in-

troduced in [9]. Substituting function (31) intougdion (30) and using the ortho-
gonality condition we have

n= e_rs M Y Hmn 9’ mn 33
A, st ¢ ~co% O 5+ &n(¢ " tn) M (6.0)  (33)

Green'’s function has the form of

G(t,&/7:1,2,0)
(34)

_ . (t—T)a_l . o — _ A2 _ A\
~ rth2[costt ¢ - cog B)n%;chn(E’”)cP(Z’H)Ea,a( et =) )

Note, that fora =1 and fora = 2, the Mittag-Lefler function has the form of [3]

El,l(z) =€, E,, (Z) = % (35)
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That way, Green’s functions for the standard diinsequatiorfe =1) and stand-
ard wave equatioffo. = 23s particular cases of the function given by @4)
-for a=1

G(t,&.7;7,,6)

oty eoga) S Somlen)on(c Aot fi-r)
-fora=2
G(t.é.7:7.¢.6)
1 ° 21 (37)

Y S 0, (£.7) @€, O)sinlc gt - 7))

" e hz(cosh?' { —cos 5) o W

Green’s function (37) for the standard wave equatipan elliptical region is de-
rived also in paper [8].

Conclusions

The analytical form of solutions to initial-boungigaroblems with a differential
equation including a Caputo derivative with resgedime and the Laplace opera-
tor with respect to space variables is presentatidalar cases of the considered
differential equation are classical diffusion andvwe equations. The presented
solutions, which concern 2D problems in rectangyatar and elliptical coordi-
nates are expressed by Green’'s functions corregpprid associated problems
with homogeneous boundary conditions. The obtai@eeen’s functions can be
used to derive solutions to the considered diffeéaénproblems with time-
fractional derivatives.
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