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Abstract. We study the properties of fractional differeritiat with respect to reflection

mapping in a finite interval. The symmetric andi-aymmetric fractional derivatives in

a full interval are expressed as fractional défgial operators in left or right subintervals
obtained by subsequent partitions. These repraganiaroperties and the reflection sym-
metry of the action and variation are applied toivdeEuler-Lagrange equations of frac-
tional free motion. Then the localization phenoorefor these equations is discussed.

Introduction

Fractional derivatives appear in differential equad modeling many pro-
cesses in physics, mechanics, control theory, kbiogtry, bioengineering and
economics. The theory of fractional differentialuagjons (FDES) is an area of
investigations that has developed rapidly duriagent decades and established
a meaningful field of pure and applied mathematMenographs [1-6] enclose
a review of solving methods using analytical andhatical approaches. Recently,
also equations including both left and right frantl derivatives have been dis-
cussed in papers [7-12]. Such differential equationixing both types of deriva-
tives naturally emerge in fractional mechanics veven standard variational cal-
culus is applied in the derivation of Euler-Lagrarggjuations.

This approach was started in 1996 by Riewe [13, déyeloped by Agrawal
and Klimek [15-17] and has been investigated eirares(compare papers [18-30]
and the references therein).

The known existence results for equations with laftd right-sided derivatives
lead to a solution with some additional restricsioncluding the parameters of the
problem such as the order of derivatives and ¢ngth of the time interval [7-
-10]. For instance, a detailed discussion of thsterce conditions for the solution
of the fractional oscillator equation has been giwe [11]. Here, we shall show
that in fact such equations can be localized inndaebvals - left or right, at least in
the case of free motion.

The paper is organized as follows. In the nextiseatre recall the basic defini-
tions and properties of both integrals and deneatiin a finite interval. Then, for
a function determined in such an interval, we defthe symmetric and anti-
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-symmetric derivatives of the Riemann-Liouvilleda@aputo type. The main re-
sults are given in Section 2 where we study thieegbdbn symmetry properties of
fractional differentiation. The obtained resulte applied to a model of fractional
free motion in Section 3. We derive Euler-Lagraeg@ations for the reflection
symmetric and anti-symmetric parts of the trajectming the methods introduced
in [32]. It appears that the obtained system ofgiqus for the symmetric and anti-
symmetric parts of the trajectory in intervald,it is in fact [Ob/2] - or respec-
tively [b/2,b] - localized. The paper is closed by a short dis@n of possible ex-
tension of the obtained results and their furthpgiiaation.

1. Reflection symmetry in fractional calculus

First we recall the basic definitions of fractiboalculus [1, 31].

Definition 1.1. Let Re(a) > 0. The left- and respectively right-sided Riemann-
-Liouville integrals of orde# are given by formulas

1

U5.N© = o5 [t =)= f()ds, t>0 1)

(IE_ () = ﬁ} [(s— )@ 1f(s)ds, t<b, )
wherel” denotes the Euler gamma function.

Definition 1.2. Let Re(a) € (n—1,n). The left- and right-sided Riemann-
-Liouville derivatives of ordeix are defined as

0N = () tnN®, t>0 ©
0N = (-2)" GzoH®, t<b )
Analogous formulas yield the left- and right-sideéaputo derivatives of order
(DE, ) =137" (i) F&), t=0 (5)
(D@ =157 (-2) @), t<b (6)

Definition 1.3. Let Re(x) € (n —1,n). The symmetric and respectively anti-
-symmetric Riemann-Liouville derivatives in inteh[£, b] are given as follows:
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Diow) = [D +(=1)"D5] )
Ty & 1 @ - @
Diow =3 [Dgs + ()" Dy (8)

The symmetric and respectively anti-symmetric Capdérivatives in interval
[0, b] are given as:

C o 1
Diosy = 3l DE, + (—1)™ °DE ]

(9)
“Dfse =3 Dg, + (~1)"1 °D ] (10)
Let us also introduce the notion of fractional greds over finite intervald, b]
Hetif @) = s f |t —sI""1 72 f(s)ds (11)
s f() = o= E}f |t — s|""17= sgn(t — 5)f (s)ds. (12)

It is easy to check that the symmetric and antiraginic fractional derivatives can
be represented similar to the one-sided Riemanaowilie and Caputo operators

Proposition 1.4. Let Rela) € (n—1,n). The symmetric and anti-symmetric
Riemann-Liouville derivatives in intervad,p] obey relations

Ijﬁz,b] = (i)n Ifas)

Dty =(2) TEss (14)

The symmetric and anti-symmetric Caputo derivativesiterval p,b] obey rela-
tions

(13)

(15)

(16)
Definition 1.5. Reflection operator@(g.s1. Q[E,_] andQ[b

By acting on arbi-
trary function f determined in interve[0, 5] are given as foIIows

Quop1 fE):= F(b—1t) 17)
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Qpo2)f® =l —1) (18)

Qg (O:= F b =) (19)

Definition 1.6. Let f be an arbitrary function determined [, 5] and vector
U1 = [y, .--.Jm] have components in the two-element £&i}. The following
recursive formulas define the respective projesticomponents of functioft

fin® =3 (1 + (1) Qo )f (®) (20)
1+ (~1imeQp, 5 1) fin® t ==
f[,ura}'mw_](tj = 1 ] ( [El’z.m]) ‘;-,. (21)
3 fin (t) t> o
: fin® t<b—gm
mead] ) =11 . ]
R (RN IR T MO S
For anym £ W functionf can be split into the respective projections
f[f] (t} = E}m+'_=5f[}'m+;-'r] (t} (23)
f[f] (tj = E_}mﬂ:[’f[ﬁ -?"?I‘L+;] (tj (24)
f) =Xafin @, (25)

where the summation in (25) is over all tlne- component vectors with coordi-
nates in the two-element set {0, 1}.

Property 1.7. Let ff; be the projection given in Definition 1.6.

(1) The following relations are valid:
Qrosfia(t) = fin(b—t) = (=1)7 fi;1(2). (26)
(2) The projections fulfill orthogonality relations

Js Fia® gra®@at = (I fia® grn(@dt) 6. (27)
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2. Properties of the symmetric and anti-symmetric derivatives

In this section we shall discuss the representgiroperties of the symmetric
and anti-symmetric fractional derivatives of ordeF {1,2). We shall prove that
acting on the[J] - projections of functiory they can be expressed as operators
dependent on the values of function in a relatiwgrt interval obtained as a re-
sult of the corresponding partitions [df b].

The representation properties enclosed in Propasitl.1 and 1.3 were proved
in [32]. They show the connection between the fomell derivatives determined in
interval [Op] and the ones determined over subinten[gst/2] and [0, b/2™]
respectively. The new results given in Propositibi#sand 1.4, connect the deriva-
tives determined in [0] with those determined over the right subintervals

Proposition 2.1. Let fi;1 be the[j]-projection of functioryf given by formula (20).
Its symmetric derivatives of ordes £ (1,2} in interval [0, 5] can be represented
as follows:

D s fin(t) = (1 + (1) QpopD)Dff 523 fin () (28)

“Diaufin(t)= (1 + (D Qps)) “Dfys i) (29)

Let fin be the[J]-projection of functionf given by formula (21) for vector
U1 = i1, e sJimds ji € £0,1}. Its symmetric derivatives of order= (1,2) in interval
[0, b] can be represented as follows:

Dﬁhb] fin (t)=2m Iin I:'IIZEE!',E:;’:""‘]J‘E 1 (£) (30)

Dhsafin® = 2"y “Dfoszmfin(t), (31)
where we denoted dJ;; the ordered product of the projection operators

My =2""(1+ (—ﬁ*“-Q[u,a]}---(i A ]) (32)

_b
-1

Proposition 2.2. Let fi;1 be the[j] - projection of functions given by formula
(20). Its symmetric derivatives of ordere (1,2) in interval [0, b] can be repre-
sented as follows:

D fin(0) = (1 + (=17 Qs D 25 fia () (33)

“Dfonfin &)= (1+ (1) Qos1) cﬂﬁ;;z,b]f L1 (8- (34)
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Let fin be the[/]-projection of functionf given by formula (22) for vector
71 = D1y e s i, 2 € £0,11. Its symmetric derivatives of orders (1,2) in interval
[0, b] can be represented as follows:

DE fin(t) =27 [T, DE:—“%J?] fin(e) (35)

“Dfa, b]f[!]":t} =2m Hl cﬂrx ,b]fm(t}: (36)

where we denoted cHJL.‘r] the following ordered product of the projectiorecg
tors

M; ==2"m(1+ (—1}4":{2[[,;.]}...(1 +(_1}}-MQ[EI—%,EI])' (37)

Proof. First, we check property (33) using the integrapooperties and the reflec-
tion properties of the second order derivative:

b
o 3 1 d? [ fials)ds
ﬂ[ﬂ,b]ﬁ)](t} - 21’1(2 _ ﬂj dtfu |t _Slﬂ:—i -

1

_ fia@ds [ fua@s |
T (2 - a}nitz

lt—sl=r " J [t —sl=t|
b
[b—.s':wJ ds=—dw] -

T falb—w) = (D)

m“——-mm-

b
1 fi (u}du fin (s)ds
T ar(2- nx}aft‘ { 0y jlb 1+j |t — sl 1

=
e

-

l—"'m

=((-D7Qup1 + V5 T2 — ) dt 2 : [b_f’ib] fin() =

= ((—1)7Qop1 + VD01 fin (B).

Let us observe that equation (33) remains validnale replace 0 by — % and

taket € [b— iﬂ b

o —
‘D[b_%b]f[jm+u}] 0] rE[b—z%,b] -
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(( 1)fmes Q-2 ]+1) [ ]fbm”ﬂ(t}

Thus, we can prove property (35) by means of thénemaatical induction princi-
ple. Using (33) and (35) we obtain for tfjg,, 4 /]-projection

1
ﬂﬁ};b]fb'm+yﬂ @ =2m Hmﬂﬁ,_%ﬁ]fﬁm+yﬂ ® =
= zmn (( 1)im+1Q [ b ] ) ﬁ? ]fbm”ﬂ{ﬂ =

1
-_ +1 o
=2 1_[|-_i".'r1+'_,-_-":| ‘D[b_:rn_bq--_ab]f[jm""-’-ﬂ (tj

which proves formula (35) to be valid for arbitrafit € N. The calculations for
properties (34) and (36) are similar.

Proposition 2.3. Let fi be the[j] - projection of functionf given by formula
(20). Its anti-symmetric derivatives of orde& (1,2} in interval [0, &] can be rep-
resented as follows:

Dl fin®) = (1 + (17 Qo) Dffpyny frin (t) (38)
Do fin ()= (1 + (=1)71Q10,7) Dy 21 i1 (2)- (39)

Let fin be the [J]-projection of functionf given by formula (21) for vector
71 = L1y eenrfiml, ji € £0,1). Its anti-symmetric derivatives of orders (1,2) in

interval [0, b] can be represented as follows:

Do) fin () = 2™ Iy Do zm fin () (40)

Diyufin@® =2m11,; © [El_n] fin(® . (41)

where we denoteﬂ[[n as the ordered product of the projection operators
M ==2""(1+ ":_13"1"'“@[&,1:]}“'(1 + II:_1}jml{'?[tﬁL]) (42)
‘pifl—4]5"

Proposition 2.4. Let fi;1 be the[j] - projection of functions given by formula
(20). Its anti-symmetric derivatives of ordes (1,2) in interval [0, 5] can be rep-
resented as follows:
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Dfy i fin(®) = (1 + (171 Q ) D2 i () (43)

l;ﬁ[ﬁ:ﬂuib]-f D](r} =(1+ (_1}‘”1@[0,1:]} Eﬁ[ﬁ,;g,b]f[ﬂ (2. (44)

Let fin be the[J]-projection of functionf given by formula (22) for vector
U1 = [i1, sl j; €10,1). Its anti-symmetric derivatives of order (1,2) in in-
terval [0, ] can be represented as follows

T m77-1me
Diowyfin (t)=2 Iy ﬂ[b—%,b]f in(® (45)

“Dffin(t) = 2m I “ﬁ[f;_ fin(®), (46)

=8
where we denoted JIEr]l the ordered product of the projection operators

Mgt =21+ (-0 5*100,) . (1 +(-1) R )} @
Now, we apply the representation properties of sginimand anti-symmetric frac-

tional derivatives of ordex £ (1,2) to prove some integration formulas. We quote
the proposition below from paper [32].

Proposition 2.5. Let a £ (1,2). The following integration formulas are valid for
any pair of functions so thgit € L, (0, b) andD[519 € L1(0, 8) or
“Dios1d € L1 (0,5) respectively

Jy £ (ODE 19(®)dt = Ty f7 fin(®) DE o1 ()t = (48)
=23,y F D s mor(Odt
Jy (O °Df yg(Ddt = Ty [) fin () °DEuigrn(tde = (49)
=232 [y F 1 “DBbragra (Bdt

The next result is an analogue of Proposition 2.5.

Proposition 2.6. Let o c (1,2). The following integration formulas are valid for
any pair of functions so thgit € L, (0, b) andP[5z14 € L1(0, b) or
“Dfos19 € L1(0,5) respectively

5 FODEg(dt = Tho [y fin®) DB sara(dde = (50)
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= 2%} -Inbf () aDE 2811 (B)dt.
fl}b f(t} D [%{b]g(t}ﬂ:t = E;-:I} J":' }c[-:l] (t} cDﬁ:},b]g[.?.] (t}dt — (51)

b
=2 E_}:E' fﬁ fb] (t} cﬂ&;":,b]gﬁ] (t} dt.

Proof. Formula (50) results from the reflection symmetfttee integral in [(]
and the representation property of the symmetrienfann-Liouville fractional
derivative given in (7)

b B
Jo F@Dfhag®dt = Tizoly fin () Dfopgra()dt =
b .
= E}:[}. _J:} f[}] {1 + (—1:} 7 Q[D,b]}ﬂﬁ;f:_,b]g[}'] (t}dt —
b &
= Yizolo fin Phjapigrn (dt +
+(=1)/ EFD -rl} fin Qoo Dfyj2m1 91 dE =
b
=Yl [y fin Dfamgin(tddt +
+ (=1 quhru Qo] [Q[ﬁ,b]f[j]‘D[b;'ng] g[}-](t}] dt =

b o b o
j=olo fin Die,)d (8t + Ejzg fy Qros1 i Pfyrzingra(t)lde =
B z
2 E}:u fu finPhojzs1901 (t)dt
The proof of formula (51) is analogous to the cltians presented above.

3. Reflection symmetry and localization of Euler-L agrange equations
for fractional free-motion

In paper [32] we derived Euler-Lagrange equatiansah action dependent on
trajectoryx and its Caputo derivative of ordet [1,2). For x being a real-valued
function determined in intervdid, b] the action looked as follows:

5= j L{x(2), D& x(t))dt (52)
o
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and after application of the minimum action prirleipnd properties of fractional
derivatives and integration, we obtained a setqoiagons of motion given in the
theorem below.

Theorem 3.1. Let a £ (1,2). Then the Euler-Lagrange equations for action (52)
look as follows

dL AL aL
(E) D[Gb]( epg, )L:CI ﬂ[ua](ﬁ)m—& (53)

provided the boundary conditions are fulfilled
@ aL
EL;.]UE+ +1;- }( )Lﬂlt oy = O

arL

Z(}u E_ju o (7j |r:ﬁ,b{m
= & “Dpex ]

Zﬂ[l}b]( GDE ) Ir:[}.}b{ oD
0+t

[

peE-l l | =
[oB] a GD I3 ¥ t=0.b '
o+

1

We shall now discuss in detail the case of freeionptwhere the action
depends solely on the derivatives:

5= J, 21 DEx(e)]at. (54)

The Euler-Lagrange equations in interf@)s] (j = 0,1, =1 — ) look as fol-
lows:

Dyl D x(0)]) — Dfgpy “Diex()]; = 0. (55)

Now, we calculate thg]fcomponents of “Dg.x(t) denoting them awp;; respec-
tively

(“D§dpo) = “Dfosy¥m + “Dfosyr = Y (56)

(D)) = “Dfpy*m+ “Dfsr¥or = Yo - (57)

We note that system (55) can be rewritten as thewimg set of four equations of
ordera (j =01, 7=1—j):
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Dios¥en — ﬁffn-,;!:]:ﬂ'_n‘] =0 (58)
“Diom*1 + “Dbsr¥tn = Vi (59)

Applying the representation property given in Prgipon 2.1 we obtain the fol-
lowing form of system (58), (59)

{-]_ + (_1}”‘?[&&'])@Eﬁ,baT]-}"[}'] - {‘l - 1:—1}".@[&1:-])5&#,1:-#:]}:[}] =0 (60)
(L+(-17Quu) “Dismxin+ (1 - (~17Qus1) Dioprz1*t1 = ¥ (61)

The above system of fractional differential equagican be transformed into an
equivalent system of fractional integral equatiofns.this aim we denote the se-
cond order derivatives of projections as

dz
2oz X (t) = 27 (t) (62)
and derive the equivalent system in the form of

(1 + (_-l}'iQ[l},b]}f EDE*:])HI - (1 — (=1)7Qrou] }?EﬂTbrj:’z yp1 =Pt (63)

(1+ D Queliasmzm + (1~ (1) Qua ) foninzm = Yu1,  (64)

whereP1(t) = et + cp s an arbitrary polynomial of the first degree amggrals
over interval [Oh/2] are defined in (11), (12) far = 2, a = 0 andb replaced by
b/2.

Comparing systems (58), (59) and (63), (64), weenlesthat the derived sys-

tem of integral equations is explicitly localizedinterval [0b/2]. Solving it in this
subinterval we automatically recover the part @f titajectory in1p/2,b].
We can perform a similar transformation of syst&®)( (59) to the integral one
applying Proposition 2.2. Thanks to this repreg@maproperty we can express
the fractional differential operators in terms gfgnetric and anti-symmetric de-
rivatives over subintervab[2 b]

(1+ D7 Qa1 )Df 2071 — (1 = (17 Q0s)D 2y =0 (g5
(1+(=1)7Qq0z1) °D jzsrxtn + (1 = (=107 Qr0.01) “Df, jony¥t1 = ¥10, (66)

Now we use formulas (11), (12) and Propositionvith n = 2, a = b/2 to obtain
the system of fractional integral equations loediin subinterval/2,b]:

(1 + (D7 Quumisnym — (1 = (07 Quu )5 mym = () (67)

(1 + (D7 Qs )IE S mzrn + (1 — (=1 Qs IG 52 = Y11 (68)
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Conclusions

We discussed the properties of fractional deriestizonnected to the reflection
symmetry in a finite interval. Splitting the givémction into its components with
determined reflection symmetry, we obtained theasgntation of the symmetric
and anti-symmetric fractional derivatives in a fullerval as operators in a subin-
terval composed of certain products of the propectiperators. Such a representa-
tion and the symmetry of the action integral widispect to the reflection, lead to
a new formulation of variational calculus for fti@nal mechanics [32]. Here, we
studied in detail a case of free motion and prabhed Euler-Lagrange equations in
this setting can be localized in subintervals.
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