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Abstract. We study the properties of fractional differentiation with respect to reflection 
mapping in a finite interval. The symmetric and anti-symmetric fractional derivatives in 
a full interval  are expressed as  fractional differential operators in left or right subintervals 
obtained by subsequent partitions. These representation properties and the reflection sym-
metry of the action and variation are applied to derive Euler-Lagrange equations of frac-
tional free motion.  Then the localization phenomenon for these equations is discussed. 

Introduction 

Fractional derivatives appear in differential equations  modeling  many pro-
cesses in physics, mechanics, control theory, biochemistry, bioengineering and 
economics. The theory of fractional differential equations (FDEs) is an area of 
investigations that has developed rapidly  during recent decades and established 
a meaningful field of pure and applied mathematics. Monographs [1-6] enclose 
a review of solving methods using analytical and numerical approaches. Recently, 
also equations including both left and right fractional derivatives have been dis-
cussed in papers [7-12]. Such differential equations mixing both types of deriva-
tives naturally emerge in fractional mechanics whenever standard variational cal-
culus is applied in the derivation of Euler-Lagrange equations.  

This approach was started in 1996 by Riewe [13, 14], developed by Agrawal 
and Klimek [15-17] and has been investigated ever since (compare papers [18-30] 
and the references therein). 

The known existence results for equations with left- and right-sided derivatives 
lead to a solution with some additional restrictions including the parameters of the 
problem such as the order of derivatives and  the length of the time interval [7- 
-10]. For instance, a detailed discussion of the existence conditions for the solution 
of the fractional oscillator equation has been given in [11]. Here, we shall show 
that in fact such equations can be localized in subintervals - left or right, at least in 
the case of free motion.  

The paper is organized as follows. In the next section we recall the basic defini-
tions and properties of both integrals and derivatives in a finite interval. Then, for  
a function determined in such an interval, we define the symmetric and anti- 
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-symmetric derivatives of the  Riemann-Liouville and Caputo type. The main re-
sults are given in Section 2 where we study the reflection symmetry properties of 
fractional differentiation. The obtained results are applied to a model of fractional 
free motion in Section 3. We derive Euler-Lagrange equations for the  reflection 
symmetric and anti-symmetric parts of the trajectory using the methods introduced 
in [32]. It appears that the obtained system of equations for the symmetric and anti-
symmetric parts of  the trajectory in interval [0,b], it is in fact [0,b/2] - or respec-
tively [b/2,b] - localized. The paper is closed by a short discussion of possible ex-
tension of the obtained results and their further application. 

1. Reflection symmetry in fractional calculus 

First we recall  the basic definitions of fractional calculus [1, 31].  

Definition 1.1. Let . The left- and respectively right-sided Riemann- 
-Liouville integrals of order  are given by formulas 

  (1)   

 ,  (2) 

where Γ denotes the Euler gamma function. 

Definition 1.2. Let  The left- and right-sided Riemann- 
-Liouville derivatives of order  are defined as  

  (3) 

   (4) 

Analogous formulas yield the left- and right-sided Caputo derivatives of order  

   (5) 

    (6) 

Definition 1.3. Let  The symmetric and respectively anti- 
-symmetric Riemann-Liouville derivatives in interval  are given as follows: 
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 [   (7) 

 . (8) 

The symmetric and respectively anti-symmetric Caputo derivatives in interval 
[0, b]  are given as: 

 [    (9) 

 [    (10) 

Let us also introduce the notion of fractional integrals over finite interval [a, b]: 

   (11) 

 .  (12) 

It is easy to check that the symmetric and anti-symmetric fractional derivatives can 
be represented similar to the one-sided Riemann-Liouville and Caputo operators. 

Proposition 1.4. Let  The symmetric and anti-symmetric 
Riemann-Liouville derivatives in interval [a,b] obey relations 

     (13) 

 .  (14)     

The symmetric and anti-symmetric Caputo derivatives in interval [a,b] obey rela-
tions 

  (15) 

  (16)  

Definition 1.5. Reflection operators  and , acting on arbi-

trary function  determined in interval  are given as follows: 

   (17) 
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  (18) 

 .  (19) 

Definition 1.6. Let  be an arbitrary function determined in  and vector 
 have components in the two-element set . The following 

recursive formulas define the respective  projections/components of function : 

    (20) 

   (21) 

   (22) 

For any  function  can be split into the respective projections 

   (23) 

    (24) 

    (25) 

where the summation in (25) is over all the m - component vectors with coordi-
nates in the two-element set {0, 1}.  

Property 1.7. Let  be the projection given in Definition 1.6. 

(1) The following relations are valid: 

  (26) 

(2) The projections fulfill orthogonality relations 

 .   (27) 
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2. Properties of the symmetric and anti-symmetric derivatives 

In this section we shall discuss the representation properties of the symmetric 
and anti-symmetric fractional derivatives of order α . We shall prove  that 
acting on the  - projections of function  they can be expressed as operators 
dependent on the values of function in a relatively short interval obtained as a re-
sult of the corresponding partitions of . 

The representation properties enclosed in Propositions 1.1 and 1.3 were proved 
in [32]. They show the connection between the fractional derivatives determined in 
interval [0,b] and the ones determined over subintervals  and   
respectively. The new results given in Propositions 1.2 and 1.4, connect the deriva-
tives determined in [0,b] with those determined over the right subintervals. 

Proposition 2.1. Let  be the -projection of function  given by formula (20). 
Its symmetric derivatives of order  α  in interval  can be represented 
as follows: 

   (28) 

 = (   (29) 

Let  be the -projection of function  given by formula (21) for vector 
, . Its symmetric derivatives of order α  in interval 

 can be represented as follows: 

   (30) 

   (31) 

where we denoted as  the ordered product of the projection  operators 

  (32) 

Proposition 2.2. Let  be the  - projection of function  given by formula 
(20). Its symmetric derivatives of order α  in interval  can be repre-
sented as follows: 

   (33) 

 =  ( .  (34) 



M. Klimek, M. Lupa 114

Let  be the -projection of function  given by formula (22) for vector 
, . Its symmetric derivatives of order α  in interval 

 can be represented as follows: 

   (35) 

  (36) 

where we denoted as the following  ordered product of the projection opera-
tors 

  (37) 

Proof. First, we check property (33) using the integration properties and the reflec-
tion properties of the second order derivative: 

 

  

Let us observe that equation (33) remains valid when we replace 0 by  and 

take : 

  



On reflection symmetry in fractional mechanics 115

 . 

Thus, we can prove property (35) by means of the mathematical induction princi-
ple. Using (33) and (35) we obtain for the -projection 

 

 

 

which proves formula (35) to be valid for arbitrary   The calculations for 
properties (34) and (36) are similar. 
Proposition 2.3. Let  be the  - projection of function  given by formula 
(20). Its anti-symmetric derivatives of order α  in interval  can be rep-
resented as follows: 

   (38) 

  = (  (39) 

Let  be the -projection of function  given by formula (21) for vector 

, . Its anti-symmetric derivatives of order α  in 
interval  can be represented as follows: 

   (40) 

 . (41) 

where we denoted as the ordered product of  the projection operators 

 . (42) 

Proposition 2.4. Let  be the  - projection of function  given by formula  
(20). Its anti-symmetric derivatives of order α  in interval  can be rep-
resented as follows: 
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   (43) 

  = (   (44) 

Let  be the -projection of function  given by formula (22) for vector 
, . Its anti-symmetric derivatives of order α  in in-

terval  can be represented as follows 

   (45)  

 ,    (46) 

where we denoted as  the ordered product of the projection operators 

  
(47) 

Now, we apply the representation properties of symmetric and anti-symmetric frac-
tional derivatives of order α  to prove some integration formulas. We quote 
the proposition below from paper [32]. 

Proposition 2.5. Let α . The following integration formulas are valid for 
any pair of functions so that  and  or 

  respectively 

 
   (48) 

   

  
(49) 

 .  

The next result is an analogue of Proposition 2.5. 

Proposition 2.6. Let α . The following integration formulas are valid for 
any pair of functions so that  and  or 
   respectively 

  (50) 
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 . 

   (51) 

 . 

Proof. Formula (50) results from the reflection symmetry of the integral in [0,b] 
and the representation property of the symmetric Riemann-Liouville fractional 
derivative given in (7) 

 

 

 

 

 

 

 

The proof of formula (51) is analogous to the calculations presented above. 

3. Reflection symmetry and localization of Euler-Lagrange equations 
for fractional free-motion 

In paper [32] we derived Euler-Lagrange equations for an action dependent on 
trajectory  and its Caputo derivative of order α . For  being a real-valued 
function determined in interval  the action looked as follows: 

  (52) 



M. Klimek, M. Lupa 118

and after application of the minimum action principle and properties of fractional 
derivatives and integration, we obtained a set of equations of motion given in the 
theorem below. 

Theorem 3.1. Let α . Then the Euler-Lagrange equations for action (52) 
look as follows 

  , (53) 

provided the boundary conditions are fulfilled 

 

 

 

 

We shall now discuss in detail the case of free motion, where the action  
depends solely on the derivatives:  

  (54) 

The Euler-Lagrange equations in interval look as fol-
lows: 

  (55) 

Now, we calculate the [j]-components of  denoting them as  respec-
tively 

  (56) 

  (57) 

We note that system (55) can be rewritten as the following set of four equations of 
order α  : 
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  (58) 

   (59) 

Applying the representation property given in Proposition 2.1 we obtain the fol-
lowing form of system (58), (59) 

   (60) 

  (61) 

The above system of fractional differential equations can be transformed into an 
equivalent system of fractional integral equations. To this aim we denote the se-
cond order derivatives of projections as  

   (62) 

and derive the equivalent system in the form of 

   (63) 

 ,  (64) 

where  is an arbitrary polynomial of the first degree and integrals 
over interval [0,b/2] are defined in (11), (12) for n = 2, a = 0 and b replaced by 
b/2. 

Comparing systems (58), (59) and (63), (64), we observe that the derived sys-
tem of integral equations is explicitly localized in interval [0,b/2]. Solving it in this 
subinterval we automatically recover the part of the trajectory in [b/2,b]. 
We can perform a similar transformation of system (58), (59) to the integral one 
applying Proposition 2.2. Thanks to this representation property we can express 
the fractional differential operators in terms of symmetric and anti-symmetric de-
rivatives over subinterval [b/2,b] 

  (65) 

  . (66) 

Now we use  formulas (11), (12) and Proposition 1.4 with n = 2, a = b/2 to obtain 
the system of fractional integral equations localized in subinterval [b/2,b]:  

   (67) 

 .  (68)  



M. Klimek, M. Lupa 120

Conclusions 

We discussed the properties of fractional derivatives connected to the reflection 
symmetry in a finite interval. Splitting the given function into its components with 
determined reflection symmetry, we obtained the representation of the symmetric 
and anti-symmetric fractional derivatives in a full interval as operators in a subin-
terval composed of certain products of the projection operators. Such a representa-
tion and the symmetry of the action integral with respect to the reflection, lead to 
a new formulation of variational calculus for  fractional mechanics [32]. Here, we 
studied in detail a case of free motion and proved that Euler-Lagrange equations in 
this setting can be localized in subintervals.  
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