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Abstract. In the present work, the construction of fractased on Archimedean solids was
discussed. The methods of 3D fractals construdimsed on uniform polyhedra were pre-
sented. It was shown that the contraction mappingquure for the construction of fractals
with non-overlapping or -disjointed contractionsiltbbe applied only for a limited number
of the polyhedra. The contraction ratios and theddarff dimensions were determined for
the existing fractals with adjacent contractionsdshon Archimedean solids.

I ntroduction

The development of fractal geometry created newswysolving topical sci-
entific problems from quantum physics [1] throudtustural diagnostics [2] to
biology and genetics [3]. They found applicationsproblems related to the me-
chanics of porous media or in modeling the rheolofyynaterials. However, the
most intensive development of the application dctals was noticed in the prob-
lems of computer graphics, pattern recognitiongeneompression and coding [4].
Deterministic fractals are used in testing rayirgalgorithms during the render-
ing of spatial scenes [5].

As is well known, the construction of fractals &skd on the self-similarity of
the input object. Two general approaches are usetha construction process:
random and deterministic ones. The random approseélly uses the well-known
Barnsley's Chaos Game or its combination with theated Function System
(IFS), e.g. Chaos Game for IFS connected in the [6et The deterministic
approach is based usually on the Multiple ReducGopy Machine (MRCM) or
on the IFS. Some of the simplest and earlier detestic fractals are the Sier-
pinski triangle and Sierpski carpet. The generalization of Sidigki fractals
based oN-sided polygons was presented in [7]. The Siekiitriangle and carpet
were generalized to the three-dimensional spac&kiamdn as the Sierfiski tetra-
hedron and Menger sponge. Only these two 3D fraeted well-known and pre-
sented in many literature positions, e.g. [6, 8]]9] the authors determined the
contraction ratios and Hausdorff dimensions foctas based on Platonic solids,
however, they did not give any rules for the camgion of such fractals.
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1. General considerations

Because of the regularity of Platonic solids, faéctbased on them could be
constructed as well. However, there is a group rofoum or even semi-regular
polyhedra which cannot be used construct non-oppéed or - disjointed fractals.
It could be presented during the construction attals based on Archimedean
solids. Further they will be callefrchimedean fractals, which could be defined as
follows.

Definition. Let AS be an Archimedean solid with the set of vectarswhich

represents the vertices with coordinatgs, a= 12,3, in the Euclidean spade®,

where S denotes the Schléfli symbol of the given polyhedamd the number in
the subscript ofA denotes the number of contraction mapping itematid hen the

fractal based on the given Archimedean solid chiddiefined as attractod> of
the IFS, which is the set of

A= wag). ®

where the contraction process & to A, was realized with use of the
Hutchinson operator:

N

w(as,)=Yw(aS). ®)

i=1

Here w (+) is an elementary similarity transformation aNddenotes the number
of contractions in a given subset, thus

O, W (v F anS)_ V”'a(rl (_Sr)(s)), 3

where r(S) is the unique contraction factor for polyhedr&@ which ensures
that the contractions ofw are non-overlapped or disjointed. That is,

w(A%)n w, (A%) =00 for i # j. Finally, using (2) the attractor o&% could be ob-
tained in the form:

AS=Yw (a5), @)

i=1

while WO(A;Q’)= AS . It implies the following: AS = lim A



Deterministic fractals based on Archimedean solids 95

Fractals are characterized by a fractional dimengiogeneral (except some
fractals like the Siergski tetrahedron or Hilbert cube). There are manmyntda-
tions of fractal measures including box dimenstapacity dimension, topological
dimension, Lebesgue dimension, Minkowski dimensitm [6, 8], which often are
incorrectly used as synonyms or generalized asaetdir dimension. The most
general formulation of the fractal dimension wassented by Hausdorff [10],
which is a power law such as:

1 In(N)

N =% or D= in(r) 5)

In the case of most 3D fractal2z D =3 (with some exceptions, e.g. Cantor dust
with D =1.89).

The aim of this work is to determine the methodcofstruction of fractals
based on convex uniform polyhedra, which is posdlilyl the analysis of Archime-
dean solids, and determine the contraction ramolsHausdorff dimensions for the
fractals defined above.

2. Construction of Archimedean fractals

Let us consider Archimedean solid; with vertices v, JR® inscribed in

spherePOR?® of unit radiusR with the central point otz[0,0,0]. Applying
contraction mapping procedure (2), one obtainsontractions scaled/r times,
where one of the vertices of the given contractiomcides with one of the verti-
ces of A;.

Consider the fist example - one of the simplestWwnedean solids - the trun-
cated tetrahedron,,ég[g's], which contains 4 triangular and 4 hexagonal facae
truncation was realized from the tetrahedron, tAugmilar principle as for the
Sierpiaski tetrahedron could be used. To determine théraciion ratio for A3,

only the hexagonal face could be considenredwill be the same as for the Sier-
pinski hexagon. It could be calculated from the foran{df. [7]):

7. (m—lj
tan—int
1 m 4

2 T, (m—lj (©)
4

tan—+—int
m m

where m is the number of vertices of a regular polygom> . Having the con-
traction ratio and coordinates of the verticeshef polyhedron [11], it is possible
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to determine the central points of circum-spheoesﬁﬁm] and the next iterations
and place in those central points the contractsoaged byl/r .

Proposition. Let vv,(AkS) be a finite number of contractions & in terms of
the Definition. Then central points , of the contractions could be determined
recursively from the vertices of> .

Proof. BecauseA; is a semi-regular polyhedron, it can be inscriliei
a sphere with radiu®R and v, 0P . Considering the strict self-similarity between

A and A>,,; and the fact that(S) is unique, one could conclude that

S I’(S) - R S
C )= —— =V, , 7
(a%) e () @)
which ends the proof.
Truncated tetrahedrow{)[&:*] and the two first approximations of the truncated
octahedron fractal are presented in Figure 1.

Fig. 2. Construction of cuboctahedron fractal

Similarly, it is possible to construct fractalsr foother Archimedean solids:

cuboctahedrona®2*¥ and small rhombicuboctahedro§®?*¥ | which are pre-

sented in Figures 2 and 3, respectively. The cotitra ratios for these fractals
were calculated based on the cross-sections gidhedra by the plane through
the edges. In the first case, one obtained a hexégo3) and in the second case -

an octagon(r = 2+,/2).
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Fig. 3. Construction of the small rhombicuboctahedractal

The above-presented two methods of fractals cart&trucould not be applied
to other, more complex Archimedean solids, thusnisd method should be intro-
duced.

Let At)o'l[s"‘], be the truncated octahedron inscribed in theunirsphere of
a unit radius with the central point cf:[0,0,0]. For the construction of the first

iteration of &00'1[3’4] one chooses one of its faces as the base (incsis the

hexagonal one). Considering the above-mentionediderations, six of its con-
tractions will be placed on the base (see FigTdjing into account the strict self-
similarity between any two iterations, the conti@etratio could be determined as

a ratio of the side lengths /s,,, of A° and A%,; (Fig. 5).

P

S
,

Sk

Fig. 4. Contractions Fig. 5. Dimensions of conimatt

Having the coordinates of the vertices, one deteethivectorsd and b and the
angle between them for determining. Now, the side length of the contraction
could be determined ag,, =(s, - p)/2.

Based on the above presented method, the folloigials could be con-

structed: truncated octahedron fracmﬁPJ[g"‘], icosidodecahedron fractaégll‘r"?‘],

53 truncated icosahedron fractaf®!

[53]

truncated dodecahedron fracta} , small

rhombiicosidodecahedron fract#°*'>* great rhombiicosidodecahedron fractal

A{)O“[s’?’] and the fractals presented before as well. Thaisttuction is presented
in Figures 6-11, respectively.
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Fig. 6. Construction of truncated oc- Fig. 7. Construction of icosid
tahedron fractal odecahedron fractal
Fig. 8. Construction of truncat- Fig. 9. Construction of truncated icosahe-
ed dodecahedron fractal dron fractal

Fig. 10. Construction of small Fig. 11. Construction of great rhombiico-
rhombiicosidodecahedron fractal sidodecahedron fractal

Table 1
Contraction ratios and Hausdor ff dimensionsfor existing Archimedean fractals

Schlafli symbol, S Contraction ratior Hausdorff dimensionD

t[33] 3 2.2618
tg2[33] 3 2.2618
to2[43] 2+42 2.5882
t91[34] 4 2.2925

t[53] 4.2361 2.3561

t[53] 6.8538 2.1271

t[35] 5.8544 2.3168
to2[53] (5—\/3)/ (5— 2\/3) 2.4729
t012[53] 2/5/ (5— 2J§) 2.2404
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The Hausdorff dimensions for the presented frastae calculated and tabu-
lated in Table 1 together with the contractionastiin the cases df[53], t[53]

and t [35], the approximate values of the contraction ratiese given because of
the high complexity of the form of their exact vadu

3. Limitations of fractals construction based on Archimedean solids

In Section 2, nine of thirteen Archimedean solidsevdiscussed and the frac-
tals based on them were defined. The last four iArelean solids, which are uni-
form and semi-regular, are impossible for fractaistruction.

Theorem. Let AS be an Archimedean solid with vertices R®. Considering

the definition, the Archimedean fractal based Ah could be constructed if and

only if the unique contraction ratio exists.
Proof. Following the presented method of fractals cortsion (see Sec. 1), the
ratio betweens, and s.,;, must be the same regardless of the chosen base. Fo

instance, let us consider the application of a tanson method to the truncated
hexahedronAt)[“'g]. As was presented in Figurel2, there are two plessiases:
a triangular and octagonal. Since poim,l;g%s) are the prisoner points d&> (see
[12] p. 74 for the definition), there is a relatibetween the contractions for arbi-
trary iterations:vn(Af)zvn’n(Ail), thus W,(Aks) has exactly one common point
with AS. Considering that all of the edges AF are equaldist(B,C)=dist(C,D).
However, proj(dist(A, B)) # proj(dist(F,C)) and proj(dist(E,C)) # proj(dist(E, D)).

In such a situation one obtains multiple valuesrgfwhere g is the number of

polygons types from which the polyhedron is comploSéne contractions scaled
by l/rq are overlapped or disjointed or overlapped asgbitited simultaneously

(Fig. 13), which is in conflict with the definitioof an Archimedean fractal.

D
B o}

Fig. 12. Vertices of interest Fig. 13. Examples of overlappgg = 2 +./2)
of truncated hexahedron and disjointed(r, = 3.8476) contractions of
truncated hexahedron
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Similarly, the great rhombicuboctahedroA'®?!“d the snub hexahedron

Al*¥ and the snub dodecahedrég®d do not fulfill the Definition either and

Alorel43 - asl43]l - AslS3 are not Archimedean fractals.
Conclusions

Archimedean fractals were introduced and the methafdtheir construction
were proposed. The contraction ratios and Hausdarfensions were determined
for existing Archimedean fractals. It was proveatthot every Archimedean solid
is able to construct a fractal with adjacent casitoms. The presented methods of
the fractal construction and the theorem couldxiereled to other uniform poly-
hedra.

References

[1] Maker D., Quantum physics and fractal space timaoStsoliton. Fract. 1999, 10, 31-42.

[2] Hadijileontiadis L.J., Douka E., Trochidis A., Fralctlimension analysis for crack identification
in beam structures, Mech. Syst. Signal Pr. 20056%9-674.

[3] Auffray C., Nottale L., Scale relativity theory aimdegrative systems biology: 1 Founding prin-
ciples and scale laws, Prog. Biophys. Mol. Bio. 2008,79-114.

[4] Ozawa K., Dual fractals, Image Vision Comput. 200, 622-631.

[5] Hart J.C., Sandin D.J., Kauffman, L.H., Ray traciegedministic 3D fractals, Proceedings of the
16" Annual Conference on Computer Graphics and inteacEechniques SIGGRAPH '89,
ACM Press, New York 1989, 289-296.

[6] Peitgen H.-O., Jurgens H., Saupe D., Fractalshferctassroom. Part I: Introduction to fractals
and chaos, Springer-Verlag, New York 1992.

[7] Kahng B., Davis J., Maximal dimensions of uniformer@inski fractals, Fractals 2010, 18,
451-460.

[8] Kudrewicz J., Fractals and chaos, WNT, Warsaw Z00Polish).

[9] Kunnen A., Schlicker S., Regular Sierpinski polyteed?i Mu Epsilon J. 1998, 10, 607-619.

[10] Hausdorff F., Dimension und duReres MaR3, Math. A®i8, 79, 157-159.

[11] Coxeter H.S.M., Regular Polytopes, Courier Dover Rakithns, New York 1973.

[12] Peitgen H.-O., Jiirgens H., Saupe D., Chaos andafsa®ew Frontiers of Science®2ed.,
Springer-Verlag, New York 2004.



