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Abstract. Two  one-term nonlinear fractional differential equations with the left- or right-
sided Caputo derivative are discussed. The existence and uniqueness of solutions, generated 
by the respective stationary function, is proved in the space of  continuously differentiable 
function. The proof, based on the  Banach theorem,  includes the extension of the  Bielecki 
method of equivalent norms.  

Introduction  

Non-integer order operators are now applied in mathematical modelling in 
many areas of mechanics, physics, control theory, engineering, bioengineering, 
economics and chemistry (see monographs [1-8] and the references therein). The 
theory of such operators, fractional calculus, describes derivatives and integrals of 
non-integer order as well as their properties. In applications of fractional calculus, 
a new class of integral-differential equations called fractional differential equations 
(FDE),  has been developed. The methods of solving  FDE extend  differential 
equations theory and include fixed point theorems, integral transform methods as 
well as operational methods based on properties of new classes of special functions 
[6-16]. In the paper we shall consider two one-term nonlinear fractional differential 
equations. The differential part contains the Caputo left- or right-sided derivative. 
We reformulate the equations in terms of a mapping determined on a space of con-
tinuously differentiable functions. In proof of the existence of a solution, we apply 
the fixed point theorem and an extended version of the Bielecki method of equiva-
lent norms [17]. The obtained result is global in the sense that the construction is 
valid for an arbitrary finite interval. 

The paper is divided into two main parts. In Section 1 we gather all the neces-
sary definitions and properties of the operators from  fractional calculus. There we 
also introduce a family of norms indexed by a non-negative real parameter and 
a non-negative vector function. Then we prove their equivalence in the space of 
continuously differentiable functions. The existence-uniqueness results are includ-
ed in Section 2, where we obtain solutions for one-term nonlinear FDE containing 
the left- or the right-sided Caputo derivative.  The paper is closed by a short discus-
sion of possible extension of the presented method of proof. 
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1. Preliminaries 

We  recall here  some of the definitions of non-integer order operators and their 
properties. We start with integrals defined for functions determined on finite inter-
val ],[ ba  (compare monographs [8],[20]). 
 

Definition 1.1 
Riemann-Liouville integrals   of order α, denoted as  )(tfI a

α
+ , )(tfI b

α
− ,  are  given  

by the following formulas  for  :0)Re( >α  
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The first of the above integrals is called the left-sided Riemann-Liouville inte-
gral and the next, the right-sided integral respectively. Applying defined fractional 
integrals, we can construct fractional derivatives. In our paper we shall consider 
one-term nonlinear FDE with Caputo derivatives given in the definition below.  
 

Definition 1.2 
Caputo derivatives  of order α, denoted as  α

+a
cD  and α

−b
cD  for ),1()Re( nn −∈α ,  

look as follows: 
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Similar to the integrals defined in (1), (2) we have the left-sided derivative (3) 
and the right-sided derivative (4). 

A detailed review of the properties and applications of  non-integer order opera-
tors can be found in monographs [4-9, 20]. We   quote here two composition rules 
for integrals and Caputo derivatives. Further, we shall apply them in the transfor-
mation of  fractional differential equations and in the investigation of their solu-
tions. 
 

Property 1.3 
The following composition rules hold for any   :],[bat ∈   

 )()( tftfID aa
c =++

αα  (5) 
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 )()( tftfID bb
c =−−

αα , (6) 

provided function f  is continuous i.e. ],[ baCf ∈  
 

Property 1.4 
The following composition rules hold for any   ],[bat ∈  and )Re()Re( αβ > : 

 )()( tfItfID aaa
c αββα −

+++ =  (7) 

 )()( tfItfID bbb
c αββα −

−−− = , (8) 

provided function f  is continuous i.e. ],[ baCf ∈ . 
 

Definition 1.5 
Function space ],[ baCm  is a space of m-times continuously differentiable func-
tions determined by the condition  

 ]},[];,[{],[ )( baCxbaCxbaC mm ∈∈= . 

The above space, endowed with a metric induced by the following norm: 
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is a metric and complete space. 

Norm (9), standard for the ],[ baCm  space, can be modified so as to be useful in 
the proof of existence-uniqueness of solutions for the discussed FDE. 
 

Definition 1.6 
We introduce the following new norm on function space  ],[ baCm  

 ∑
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where jG  are arbitrary continuous,  non-negative functions and κ is a positive real 

number. 
Let us note that for κ = 0 we recover norm (9) and the corresponding induced 

metric. 
It is easy to check that for any value of parameters  { }0, 21 ∪∈ +Rκκ  norms 

(10) are equivalent to each other on the ],[ baCm  space. This fact also implies their 

equivalence to the standard norm .
mC⋅  
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Property 1.7 

Norms
mC

1κ⋅ and 
mC

2κ⋅  are equivalent  on space ],[ baCm  for any 

{ }0, 21 ∪∈ +Rκκ  and functions jG  obeying the conditions of Definition 1.6. 

Proof:  let us assume 21 κκ < . Then the following inequalities are valid  for expo-
nential coefficients 
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As a consequence we obtain the relations for any function ],[ baCf m∈  and 
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Due to the properties of the exponential function we also have 
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where we  denoted constants jB  and B as 

 { }m
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bat
j BBBeB j ,...,maxsup 1

)()(

],[

12 == −

∈

κκ
. 

From our calculations, it follows that for any function   ],[ baCf m∈ , its norms 
fulfill the inequalities: 

 
mmm CCC
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which means norms 
mC

1κ⋅  and 
mC

2κ⋅ are equivalent on function space  

],[ baCm . 
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2. Main results 

In this section we shall solve one-term nonlinear FDE in the form of 

     ))(,()( tfttfDa
c Ψ=+

α           (11) 

   ))(,()( tfttfDb
c Ψ=−

α         (12) 

The first of the above equations contains the left-sided Caputo derivative, the se-
cond one the right-sided Caputo derivative. We assume that in both cases order α is 
a real number and equations are determined on arbitrary finite interval ],[ ba .  
Let us observe that equations (11), (12) can be reformulated as the following 
equivalent fractional integral equations 

 )())(,()( ttftItf oa ϕα +Ψ= +   (13) 

 )())(,()( ttftItf ob ϕα +Ψ= −   (14) 

where functions oϕ  and oϕ  are arbitrary stationary functions of the left- and right- 
-sided Caputo derivative. In both cases these functions are polynomials of degree 
determined by the order of the respective derivative. 
Further, the obtained fractional integral equation (13) is an example of a more gen-
eral integral equation: 
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with the kernel given in our case as 
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We use kernel 0K  to construct a mapping  on the ],[2 baCn−  space: 

           )())(,(),(:)( 0 tdssysstKtTy o

t

a

ϕ+Ψ= ∫ . (17) 

Now, we are able to rewrite equations (11), (13, (15) as the following fixed point 
condition 

 )()( tTftf =  
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determined on the space of n–2-times continuously differentiable functions. 
In what follows we shall also apply  kernels in the form of 
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Let us note that kernels (16), (18) are non-negative,  continuous functions on set  
],[],[ baba ×  when 1≥α  and 2,...,1,0 −= nj .  

The procedure of transforming an  FDE of type (11) into the above fixed point 
condition with mapping (17) was discussed earlier in the fractional calculus. Our 
aim is to present an efficient method of proof that it is contractive in the chosen 
function space. In the lemma below we extend the Bielecki method of equivalent 
norms [17] and apply the family of norms indexed by a non-negative scalar param-
eter and non-negative vector function, defined in (10). 
 

Lemma 2.1 
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The distance between images Tx and Ty obeys the following inequalities for any 

pair of functions ],[, 2 baCyx n−∈  
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Summarizing,  we observe  that for any pair of functions ],[, 2 baCyx n−∈ , the 
distance between their images is  smaller than the initial distance, provided we 

consider mapping T acting on the )],,[(
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where jM  are given in  (20) for 2,...,0 −= nj . 

The proved property of mapping T leads to the following proposition describing the 
solution of a one-term FDE with the left-sided Caputo derivative. 
 

Proposition 2.2 
If 1≥α , ),1( nn−∈α  and function  Ψ fulfills the following Lipschitz condition 

],[,],[)()()())(,())(,( baCyxbattytxtLtyttxt ∈∀∈−≤Ψ−Ψ  
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then each stationary function  0ϕ of the left-sided Caputo derivative, generates 

a unique ],[2 baCn−  solution of fractional differential equation  

 ))(,()( tfttfDa
c Ψ=+

α  

This solution is a limit of iterations of mapping T defined below  on the ],[2 baCn−  
space: 
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where ],[2 baCn−∈ψ  arbitrary. 
Proof: we start the proof by transforming  equation (11) into an equivalent frac-
tional integral equation. Thanks to the composition rule given in Property 1.3 we 
can rewrite equation (11) as follows 

 )())(,()( ttftItf oa ϕα +Ψ= +  

where  stationary function  0ϕ of the left-sided Caputo derivative fulfills the condi-

tion: 

 0)(0 =+ tDa
c ϕα  

As is known from  fractional calculus, the class of the stationary functions  con-
sidered as a subclass of continuous functions contains  only polynomials of degree 
dependent on the order of derivative. When we assume ),,1( nn −∈α then each 0ϕ  

is a polynomial of degree n-1 with arbitrary coefficients. 
Hence, we can reformulate FDE (11) and the corresponding fractional integral 

equation (13) as the following fixed point condition: 
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where mapping T is generated by 0ϕ  and defined as follows for any given 
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In the next step we apply Property 1.4 and note 
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where fractional integrals on the right-hand side are determined by the  
kernels  given in (18) 

 2,...,1)())(,(),())(( )(
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t

a

j
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As fractional integrals are bounded in the space of functions continuous in in-
terval ],[ ba  (compare Lemma 2.8 in [8]), we see that mapping T transforms func-

tions from the ],[2 baCn−  space into images belonging to the same function space 

 ],[],[: 22 baCbaCT nn −− →  

Applying Lemma 2.1 we observe that the above mapping is contractive on the 

)],,[(
2

2
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⋅−
nCn baC κ  space, provided κ is large enough. Therefore  function  

],[2 baCf n−∈ , obeying  fixed point condition (21), exists. This function is  

a unique solution to equation (11) in this space,  generated by 0ϕ . In addition, the 

Banach theorem  allows us to construct this unique solution as a limit of iterations 
of mapping T. 

Let us note that an analogous existence-uniqueness result can be proved for 
equation (12) with the right-sided Caputo derivative. As we know [20], the left- 
and right-sided derivatives on  finite interval ],[ba are connected by the action of 
reflection operator Q: 

 )()( tQfDQtfD a
c

b
c αα

+− =  

 )(:)( tbaftQf −+= . 

Thus, we can rewrite equation (12) as an FDE with the left-sided Caputo deriva-
tive. Its solution exists due to Proposition 2.2 and is generated by the respective 
polynomial 0ϕQ .  

 

Proposition 2.3 
If 1≥α , ),1( nn−∈α  and function  Ψ fulfills the following Lipschitz condition 

],,[,],[)()()())(,())(,( baCyxbattytxtLtyttxt ∈∀∈−≤Ψ−Ψ  

then each stationary function  0ϕ of the right-sided Caputo derivative, generates  

a unique ],[2 baCn−  solution of fractional differential equation  
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This solution is a limit of iterations of mapping T defined below  on the ],[2 baCn−  
space: 

 ],[)())(,(:)( 2 baCyttytItyT n
ob

−
− ∈+Ψ= ϕα  

 ψTf k
k )(lim ∞→=  

where ],[2 baCn−∈ψ  arbitrary. 

3. Final remarks 

Two types of nonlinear one-term FDE with Caputo derivatives were discussed 
and solved  globally in an arbitrary finite interval. We derived their solution in the 
class of continuously differentiable functions. As a main tool of proof we applied 
the extended version of the Bielecki method and explicitly constructed solutions 
generated by stationary functions of the Caputo derivative.  

Let us note that the scaling of  norms using exponential functions, as in formula 
(10), restricts our results to equations of fractional order 1≥α . The obtained  solu-

tions belong to the ],[2 baCn−  space when ).,1( nn−∈α  In  further investigations 
we shall also consider  case 0<α<1 and in general for ),1( nn −∈α  solutions in 

the corresponding  ],[1 baCn−  space. To this aim we propose to apply scaling via the 
Mittag-Leffler function which is a generalization of the exponential function: 

 ∑
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