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Abstract. Two one-term nonlinear fractional differentialuagjons with the left- or right-
sided Caputo derivative are discussed. The existand uniqueness of solutions, generated
by the respective stationary function, is provedhia space of continuously differentiable
function. The proof, based on the Banach theoramludes the extension of the Bielecki
method of equivalent norms.

I ntroduction

Non-integer order operators are now applied in emattical modelling in
many areas of mechanics, physics, control theargineering, bioengineering,
economics and chemistry (see monographs [1-8] beddferences therein). The
theory of such operators, fractional calculus, dbes derivatives and integrals of
non-integer order as well as their properties.dpliaations of fractional calculus,
a new class of integral-differential equationsexffractional differential equations
(FDE), has been developed. The methods of solvifigE extend differential
equations theory and include fixed point theoreimggral transform methods as
well as operational methods based on propertieewfclasses of special functions
[6-16]. In the paper we shall consider two one-taomlinear fractional differential
equations. The differential part contains the Capetft- or right-sided derivative.
We reformulate the equations in terms of a mapdetgrmined on a space of con-
tinuously differentiable functions. In proof of tlegistence of a solution, we apply
the fixed point theorem and an extended versiath®Bielecki method of equiva-
lent norms [17]. The obtained result is globalhe sense that the construction is
valid for an arbitrary finite interval.

The paper is divided into two main parts. In Secttlowe gather all the neces-
sary definitions and properties of the operatoosifrfractional calculus. There we
also introduce a family of norms indexed by a negative real parameter and
a non-negative vector function. Then we prove tlegjnivalence in the space of
continuously differentiable functions. The existenmiqueness results are includ-
ed in Section 2, where we obtain solutions for ez nonlinear FDE containing
the left- or the right-sided Caputo derivative. eTgaper is closed by a short discus-
sion of possible extension of the presented metifigdoof.
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1. Preliminaries

We recall here some of the definitions of noreger order operators and their
properties. We start with integrals defined fordimns determined on finite inter-
val [a b] (compare monographs [8],[20]).

Definition 1.1
Riemann-Liouville integrals of ordes; denoted asl 2, f (t), 1, f(t), are given
by the following formulas forRe@) > O0:

t

o 1 f(u)du
Ia+f(t)_r(a)~£(t—u)1'” t>a (1)
g oo 1% f(udu
Ib_f(t)—r(a)!(u_t)l_a t<b. )

The first of the above integrals is called the-gfted Riemann-Liouville inte-
gral and the next, the right-sided integral respelt Applying defined fractional
integrals, we can construct fractional derivativiesour paper we shall consider
one-term nonlinear FDE with Caputo derivatives giuethe definition below.

Definition 1.2
Caputo derivatives of order, denoted as°DZ, and °D,_ for Re(@)O(n-1n),
look as follows:

d

ajnl.;;” f) t>a 3)

°D§+f(t)=(

CDg_f(t):[—%jnIQ_‘”f(t) t<b (4)

Similar to the integrals defined in (1), (2) we bahe left-sided derivative (3)
and the right-sided derivative (4).

A detailed review of the properties and applicagioh non-integer order opera-
tors can be found in monographs [4-9, 20]. We tginere two composition rules
for integrals and Caputo derivatives. Further, Wallsapply them in the transfor-
mation of fractional differential equations andtire investigation of their solu-
tions.

Property 1.3
The following composition rules hold for any] ab, ]:

‘Dala f®)=1(1) (5)
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‘Dylg- f®)=f(), (6)
provided functiorf is continuous i.ef OC[a,b]
Property 1.4
The following composition rules hold for anyd a b ,ahd Re(8) > Re(@):
DLIL M) =127 () (7
DI f(t) =157 (1), ®)

provided functiorf is continuousi.ef OC 4 b .]

Definition 1.5
Function spaceC™[a b] is a space ofmtimes continuously differentiable func-
tions determined by the condition

C"ab] ={xO0C[ab]; x™ OC[ab]}.
The above space, endowed with a metric inducetidyallowing norm:
" =S sup| D) (9)
11 =3 sup 1)

is a metric and complete space.
Norm (9), standard for th€™ a b] space, can be modified so as to be useful in
the proof of existence-uniqueness of solutiongherdiscussed FDE.

Definition 1.6
We introduce the following new norm on function spaC™[ a b]

3

I =2 suplt @ (ofe™ (10)
where G, are arbitrary continuous, non-negative functiandx is a positive real

number.

Let us note that fok = 0 we recover norm (9) and the corresponding induced
metric.

It is easy to check that for any value of paranseter,«, OR, D{O} norms

(10) are equivalent to each other on €[ a b] space. This fact also implies their

equivalence to the standard noh‘rﬁﬂc .
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Property 1.7
Norms| E'|Zm and | E]|f2m are equivalent  on spaceC™ab] for any

Ky, k, OR, 0{0} and functionsG; obeying the conditions of Definition 1.6.

Proof: let us assume; < k,. Then the following inequalities are valid forpex
nential coefficients

—K1Gj (t) —K,Gj (1)

e >e j=0L...m

Sup‘ f (l)(t)‘e K,Gj (1) > z Sup‘ f (J)(t)‘e kG (t)
j= oﬂab] ot ab]

As a consequence we obtain the relations for amgtion f OC™[ab] and
K, <K,

cm cm
11 =, -
K1 K3

Due to the properties of the exponential functi@also have

|f|| Z sup‘f U)(t)‘e G, (1) _ Z sup e % sup‘f“)(t)‘e QG0
0 tabl tlab]

sf:. UQﬂ”mkﬁem<B§:mthxme@G“—B””
j=0

t]a,b]

where we denoted constarB§ andB as

B, = supe*™ V0 B=maxB,,....B,}.
tlab]

From our calculations, it follows that for any feiom f OC™ab], its norms
fulfill the inequalities:

cm cm cm
Bltl,, 2[fl. =l
K3 K1 K3

which means norms|| EN:lm and | Emfzmare equivalent on function space

C"ab].
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2. Main results
In this section we shall solve one-term nonliné@EFRn the form of
‘D f (1) =W(t, f(1) (11)
DL (t) =W(t, (1) (12)

The first of the above equations contains thediefed Caputo derivative, the se-
cond one the right-sided Caputo derivative. We mgsthat in both cases orders
a real number and equations are determined omamsbftnite interval[ a b] .

Let us observe that equations (11), (12) can bermeflated as the following
equivalent fractional integral equations

FO)=159E 1) +4,() (13)

fO)=15PE T 1) +8,() (14)

where functionsg, and @, are arbitrary stationary functions of the leftdarght-

-sided Caputo derivative. In both cases these iflumetare polynomials of degree
determined by the order of the respective derieativ

Further, the obtained fractional integral equatibd) is an example of a more gen-
eral integral equation:

f(t) = J. Ko(ts)W(s f(s))ds +4,(t) (15)

with the kernel given in our case as

(t-9)*
Kot =1 (@) s=t (16)
0 s>t.

We use kerneK, to construct a mapping on i ?[a b] space:

TV = [Ko (£ 9W(s Y9)ds +4,(0). (17)

Now, we are able to rewrite equations (11), (13) @s the following fixed point
condition

f(t) =Tf (t)
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determined on the spaceref2times continuously differentiable functions.
In what follows we shall also apply kernels in fbem of

=97 <t
Ki(ts)=4 I(a-}) - (18)
0 s>t.

Let us note that kernels (16), (18) are non-negatigontinuous functions on set
[ab] x[ab] whena 21 and j =0L,...,n— 2
The procedure of transforming an FDE of type (bi) the above fixed point

condition with mapping (17) was discussed earlethie fractional calculus. Our
aim is to present an efficient method of proof thhas contractive in the chosen
function space. In the lemma below we extend thelelBki method of equivalent
norms [17] and apply the family of norms indexedabyon-negative scalar param-
eter and non-negative vector function, definedLid)(

Lemma2.1
Mapping T, defined in formula (16) is contractive on theC"(?[ab], IIEIPfH)

n-2
space when k > z M,, and
i=0

t
G;(t) = j K, (u) L(u)du (19)
K, (u) = supK; (t,u).
E[a,b]
Proof: let us denote
[¥1; = sup |y(t) &0
tTab]

and in addition constants

M, =1 M, = tg[ulE])e"‘G"(t)“@"(t) j=1..n-2  (20)

The distance between imagés and Ty obeys the following inequalities for any
pair of functionsx, y JC" [ a b]

||Tx - Ty|

:n_z _ nz-f sup] eI j‘ K, (t )% (s Xs))ds - Jt‘ Ki(t,9)¥ (s y(s))d% <

j=0 ﬂ][a,b
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<Y supe ke.mﬂ K; (t9)[W(s X)) - W(s (s)] |[ds<

n—

2
[upe —KG;j (t)J' K. ( 3 |_($| X(S) _ X$|e‘KQ)(S)eKQ;(S)e KG; (S)eKGJ (S)ds<
j=0 a

1 0 &4 -G (1) 0 G (5)
<—[x- M. KK 1 ds=
< Ix >4IKD]§0 ) Supe I 1(9 U9 Vds

= Ljx-of? DZM supe” g0 1)< Ly DZM suplt-e")<

tH{ab] t{ab]

N
N
N

n—-

M; M

—[x= vl <= —lx- o

Summarizing, we observe that for any pair of fioms x,yOC" [ ab], the
distance between their images is smaller thanirthi@l distance, provided we

j
CnZ

T
o
T
o

n-2 n-2
consider mapping acting on the(C"[a,b], | E]|(; ) space withx > ZM P
i=0
n-2

M;

-T2 —lx-y]

where M are given in (20) foj =0,...,n— 2

Cn—2
K

The proved property of mappifigleads to the following proposition describing the
solution of a one-term FDE with the left-sided Capderivative.

Proposition 2.2
If =1, aJ(n—-1n) and function¥ fulfills the following Lipschitz condition

[W(t, X(t)) = P(t, (1) < LE)[x(t) - y(t) tO[ab]  OxyOC[ab]
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then each stationary functiong, of the left-sided Caputo derivative, generates

a uniqueC"?[a,b] solution of fractional differential equation
Dy, f(t) =W(t, f (1)
This solution is a limit of iterations of mappifigdefined below on th€" [ a b]
space:
Ty(t) =1, WL y(t)) +d,(1) yOC™?[ab]
f=lim,_ (M)
wherew OC"?[a b] arbitrary.
Proof: we start the proof by transforming equation (Ittpian equivalent frac-

tional integral equation. Thanks to the compositiole given in Property 1.3 we
can rewrite equation (11) as follows

ft)=15%E f (1) +a,(t)

where stationary functiorp, of the left-sided Caputo derivative fulfills therab-
tion:

CDg+ o) =0

As is known from fractional calculus, the clasgh# stationary functions con-
sidered as a subclass of continuous functions entanly polynomials of degree

dependent on the order of derivative. When we assufi (n-1,n), then eachp,

is a polynomial of degreme-1 with arbitrary coefficients.
Hence, we can reformulate FDE (11) and the corredipg fractional integral
equation (13) as the following fixed point conditio

f(t) =Tf(t) tO[ab] (22)
where mappingT is generated by@, and defined as follows for any given
yOC"™?[ab]

Ty(t) =12, y(t)) +¢,(t)

In the next step we apply Property 1.4 and note

Ty = 127w, y() + 5" (t) j=1..,n-2
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where fractional integrals on the right-hand sidee aletermined by the
kernels given in (18)

(Ty)™ =jK,- (t,S)¥(s Us)ds+ g (1) j=1..n-2

As fractional integrals are bounded in the spactinétions continuous in in-
terval [ b] (compare Lemma 2.8 in [8]), we see that mapfingansforms func-

tions from theC"?[a b] space into images belonging to the same funcpeanes
T:C"?[gb] - C"?[ab]

Applying Lemma 2.1 we observe that the above mapsrcontractive on the
(C™?[ab],| E]|fn72) space, providede is large enough. Therefore function

f OC" 9 ab], obeying fixed point condition (21), exists. Thignction is
a unique solution to equation (11) in this spagenerated byp, . In addition, the

Banach theorem allows us to construct this ungplation as a limit of iterations
of mappingT.

Let us note that an analogous existence-uniqueressdt can be proved for
equation (12) with the right-sided Caputo derivatids we know [20], the left-
and right-sided derivatives on finite interva lp arg connected by the action of

reflection operato®:
“Dy-f (1) =Q"DZ.Qf (1)
Qf(t):=f(a+b-t).

Thus, we can rewrite equation (12) as an FDE vhighleft-sided Caputo deriva-
tive. Its solution exists due to Proposition 2.2 am generated by the respective

polynomial Qg, .

Proposition 2.3
If =1, aJ(n—-1n) and function¥ fulfills the following Lipschitz condition

Wt x(t) = W(t, y)| < LX) = y(t) tO[ab]  OxyOC[ab],

then each stationary functiorg, of the right-sided Caputo derivative, generates
a uniqueC"?[a b] solution of fractional differential equation

Dy f(t)=W(t, f(t)).
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This solution is a limit of iterations of mappifigdefined below on th€"?[a b]
space:

Ty(t) = 1L W(t y(1) + &, (1) yOC" 4 ab]
f =lim, (M) y

wherew OC"?[ab] arbitrary.

3. Final remarks

Two types of nonlinear one-term FDE with Caputoivagives were discussed
and solved globally in an arbitrary finite intekvé/e derived their solution in the
class of continuously differentiable functions. &snain tool of proof we applied
the extended version of the Bielecki method andi@ig constructed solutions
generated by stationary functions of the Caputivdtve.

Let us note that the scaling of norms using exptalefunctions, as in formula
(20), restricts our results to equations of frawioordera >1. The obtained solu-

tions belong to theC" Y[ g b] space wherw O(n-1,n). In further investigations
we shall also consider cas€dXx1 and in general for O(n— f )solutions in

the correspondingC"[ab] space. To this aim we propose to apply scalinghgéa
Mittag-Leffler function which is a generalizatiohthe exponential function:

e D)
[l =2 sup
iz aan B, (k(t-a)")

oy K (=)
E,oji(k(t-2a) ])—;W-
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