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Abstract. Static analysis of Kirchhoff plate by the Boundary Element Method is presented 
in the paper. The Bettie theorem is used to derive the boundary integral equation. Simpli-
fied curved elements are introduced. Modified approach of boundary integral equation 
formulation is adopted in which there is no need to introduce the equivalent shear forces at 
the boundary and concentrated forces at the plate corners. The collocation version of 
boundary element method with singular and non-singular approach is presented. 

Introduction 

The Boundary Element Method (BEM) was created as a completely independ-
ent numerical tool to solve engineering problems [1, 2]. The BEM do not require 
the all domain discretization but only the boundary of a considered structure. The 
Boundary Element Method is often used in the theory of both thin and thick plates 
and is particularly suitable to analyse the plates of arbitrary shapes and rested on 
internal supports. Analysis of plate bending using BEM was introduced by Bèzine 
[3] and Stern [4] for Kirchhoff plate theory and by Vander Weeën [5] for the thick 
plate theory. Okupniak and Sygulski [6] used fundamental solution of Reissner 
plate proposed by Ganowicz [7]. Altiero and Sikarskie [8] and Debbih [9, 10] pro-
posed BEM to plate bending problems. Beskos [11], Wen, Aliabadi and Young [12] 
applied BEM to dynamic problem of plates. Some authors present a modified ap-
proach of  thin plate analysis. El-Zafrany, Debbih and Fadhil [13] assumed non-
zero distribution of stress over the plate thickness. Abdel-Akher and Hartley [14] 
worked out the method of fundamental function integration connected to external 
distributed loading. Guminiak, Okupniak and Sygulski [15] assumed a physical 
boundary condition also discussed in this paper. Present paper includes a modified 
formulation for bending analysis of plates, in which three geometric and three stat-
ic variables at the plate boundary are considered. Application of curved boundary 
elements to structural analysis was proposed by Wrobel and Aliabadi [2]. Authors 
proposed three-node continuous and discontinuous quadratic elements also dis-
cussed in this paper. In the paper curved, simplified boundary elements are intro-
duced into the thin plate analysis. This part of elaborations includes theoretical 
aspect of thin plate bending problem using the boundary element method. 
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1. Integral formulation of thin plate bending in modified approach 

On the plate boundary, there are considered following variables: the shear force 

nT , bending moment nM , twisting moment nsM  and  deflection w , angle of rota-

tion in normal direction nϕ  and angle of rotation in tangent direction sϕ . Only two 
of them are independent. The boundary integral equation is derived using Bettie 
theorem. Two plates are considered: infinite plate, subjected unit concentrated 
loading and the real one. As a result the boundary integral equation is in the form 
[15]: 
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where the fundamental solution of biharmonic equation ( ) ( )xy −⋅=∇ δDw 14  is 
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for a thin isotropic plate, xy −=r , δ  is Dirac delta and ( ) ( )( )2
p
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is a plate stiffness. The coefficient )(xc  depends on localization of point x and 
1)( =xc , when x is located inside the plate region, 5.0)( =xc , when x is located on 

the smooth boundary and 0)( =xc , when x is located outside the plate region. 

 

 

 

 

 

 

 

Fig. 1. Distribution of the support reaction - classic and present approach 
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The second equation can be derived by substituting of unit concentrated force 
** 1=P  unit concentrated moment ** 1=nM . It is equivalent to differentiate the first 

boundary integral equation (1) on n direction in point x on a plate boundary. 
Idea of the proposed approach and formulation of boundary integral equation in 

plate bending is shown in Figure 1. 

2. Boundary conditions 

The boundary conditions for clamped edge are formulated as follows [15]: 

 0 ,0 ,0 ,0 ==== nssn Mw ϕϕ  (3)

The unknown variables are: the bending moment nM and the shear force nT .  
For simply-supported edge the boundary conditions have the form [15]: 

 0 ,0 ,0 ,0 ==== nsns MMw ϕ  (4)

The unknown values are: the shear force nT  and the angle of rotation in direction n, 

nϕ .  
Free edge can be described by the following boundary conditions [15]: 

 0 ,0 ,0 === nsnn MMT  (5)

The unknown variables are: the deflection w  and the angles of rotation nϕ , sϕ .  

Because the relation between sϕ and w  is known, sws ∂∂=ϕ , there are only two 

independent values: w  and nϕ . The parameter ( ) sw ∂∂ y  can be calculated ap-
proximately by constructing a differential expression using deflections of three 
neighbouring nodes. 

3. Types of boundary element 

Definition of curvilinear boundary element may be different. It is possible to de-
fine geometry of element considering three nodal points and only one collocation 
point connected with relevant physical boundary value. This type of element can be 
called as curved, “constant” type. The collocation point may be located slightly 
outside of plate edge (Fig. 2a) or exactly on the element (Fig. 2b). 
Geometry of the element is defined using polynominal function, described in 
standard coordinate system 1 ,0 ,1− . The functions are in the form: 

 ( ) ( )ηηηηη +=−=−= 1 
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Fig. 2. Curved boundary element of constant type in non-singular and singular definition  

Another type of curved element is typical isoparametric element with three  
geometrical nodes and three nodes connected with suitable boundary variables 
(Fig. 3). 

 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Continuous, curved boundary element in singular formulation    

 
Discontinuous boundary element is defined if localization of external physical 

nodes (collocation points) does not cover with geometrical nodes (Fig. 4).  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Discontinuous, curved boundary element in singular formulation    
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The geometry of this element is defined using functions describing by equation (6). 
Suitable boundary variables taking a stand in boundary integral equation (1) are 
defined according to following functions [2]: 
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where l is the length of the matrix element, 1 ;1−∈η , a is the distance between 

first nodes: geometrical and physical, b is the distance between last nodes: geomet-
rical and physical (Fig. 4). 

4. Construction of set of algebraic equation 

A plate edge is discretized using boundary elements. In matrix notation the set 
of algebraic equation has the form: 

 FBG =⋅  (8)

where G  is matrix of suitable boundary integrals, B  is the vector on unknown 
variables and F  is right-hand-side vector. If on the part of plate boundary free 
edge takes place, then equation (8) may be prescribed to the form: 
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where I is unit matrix and ∆∆∆∆ is matrix constructed using suitable difference equa-
tion. These equation will be discussed in point 4.1. In present formulation of 
boundary integral equation, angles of rotation in tangent direction ϕs are additional 
unknown variables.  

4.1. Construction of characteristic matrix 

The boundary integral equation will be formulated in singular and non-singular 
approach. To construct the characteristic matrix ,G  integration of suitable funda-
mental function on boundary is needed. Integration is done in local coordinate sys-
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tem ni, si connected with ith boundary element and next, these integrals must be 
transformed to nk, sk coordinate system, connected with kth element (Fig. 5).  

Let it be assumed, that boundary integral equation will be formulated in non-
singular approach. The collocation point is located slightly outside of the plate 
edge. Localization of collocation point is defined by the parameter δ or non-
dimensional parameter ε. This parameter can be defined as ε = δ/c, where c is the 
length of element chord. 

To calculate elements of characteristic matrix are applied following methods: 
a) classic, numerical Gauss procedure for non-quasi diagonal elements, 
b) modified, numerical integration of Gauss method for quasi-diagonal elements 

[6]. 
Boundary integrals on curved element are calculated according to Gauss meth-

od: 
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where  f * is suitable fundamental function, m is the number of Gauss point, Wj is 
the weight of jth point, J(ηj) is Jacobian of transformation, and ηj is abscissa of  jth 
point. Fundamental functions are expressed using ni, si coordinate system. Then, all 
coordinates of Gauss points are expressed as: 
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where coordinates of three geometrical nodes are used:  ni, si. Jacobian of transfor-
mation is expressed as: 
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Integrals of fundamental functions are calculated using ni, si coordinate system, 
connected with ith boundary element. Then, they are transformed to nk, sk coordinate 
system on the following way: 
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 nssnnnn cTcTT
iik
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where ( )iknn nnc , cos=  and ( )ikns snc , cos= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Construction of characteristic matrix 

To calculate quasi-diagonal integrals using non-singular approach, Gauss 
|method of integration also can be used. Because some of fundamental functions 
have extensive gradients in circumvolution of collocation point, the classic Gauss 
method does not give sufficiently accurate results. Hence, the manner proposed by 
Okupniak and Sygulski is applied [6]. Authors proposed inverse localization of 
Gauss points in domain of integration (Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Calculation of quasi-diagonal integrals using modified Gauss method 
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In case of a free edge, it is needed to extend of characteristic matrix to elements 
connected with angle of rotation in tangent direction ϕs. The characteristic matrix 
will have extended dimension NN × , where: sNNN += , and Ns is number of 

additional geometrical parameters ϕs. Additional boundary integrals are localized 
in matrix GBS according to matrix equation (9).  

In singular approach, when the collocation point is localized exactly on the 
boundary, the quasi-diagonal boundary integrals are calculated differently. The non 
quasi-diagonal integrals of characteristic matrix are calculated using standard 
Gauss method. The fundamental function w* has the singularity of the second or-
der. For the clamped edge, integrals of functions: w*, ϕn

* and ∗w can be calculated 
using standard or modified Gauss procedure. The integral 
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where: 22 snr += , may be evaluated approximately, assuming small curvature 
of element.  Then, it is possible to assume that parameter n goes to zero. Hence, the 
function described by the equation (17) will have the form: 
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Dn ln

4

1 ⋅≈∗

π
ϕ  (18)

and integral of expression (18) may be evaluated analytically as integral on line 
element id

~  which is parallel to the si axe (Fig. 8).  
For the edge resting on continuous linear support (simply-supported edge), inte-

gration of fundamental functions ∗w and ∗w  can be done using classic or modified 
Gauss procedure (Fig. 6). The elements of characteristic matrix, which are respon-
sive to integration of functions ∗

nM  and ∗
nM  may be calculated using method of 

rigid body movement. To calculate these elements, the boundary integral equation 
(1) must be considered.  It is assumed, that all the non quasi-diagonal boundary 
integrals are calculated, external loading acting on a plate surface is equal to zero 
(p = 0, hence all of boundary variables are equal to zero) and the rigid rotation of 
plate is done (Fig. 7). Hence, the boundary integral equation (1) after discretization 
will have the form: 
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Fig. 7. Calculation of quasi-diagonal integrals using method of the rigid body movement: 
rigid rotation  

For the free edge, integration of fundamental functions ∗
nT  and ∗

nT  can be cal-
culated using rigid movement - rigid translation. It is assumed, that all the non qua-
si-diagonal boundary integrals are calculated, external loading acting on a plate 
surface is equal to zero (p = 0, hence all of boundary variables are equal to zero) 
and the rigid translation of plate is done: wb > 0, ϕn = 0 and ϕs = 0. Hence, equation 
(1) after discretization will have the form:  
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Angle of rotation in tangent direction ϕs on a plate boundary depends on bound-
ary deflection wb. Additional parameters ϕs, which are elements of matrix ∆∆∆∆, are  
calculated by construction difference expressions using deflection of three neigh-
bouring physical nodes (Fig. 8). These expressions have the form: 
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In present formulation of boundary integral equations, the characteristic matrix 
G is fully populated. For large number of boundary elements and mixed boundary 
conditions, matrix G may be wrong conditioned. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Construction of difference expressions (23)-(25) 

Expression (23) is applied for the first boundary element on a free edge. Expression 
(24) is used for all internal boundary elements: from second to last but one. Ex-
pression (25) is applied for the last boundary element taking place on a free edge. 

4.2. Construction of right-hand-side vector 

It is assumed, that constant loading p is acting on a plate surface. A contour of 
loading p was expressed in the poligonal form. Suitable integrals  have the form: 

∫
Ω

∗ Ω⋅ dwp  and ∫
Ω

∗
Ω⋅ dwp . These integrals can be evaluated analytically accord-

ing to Abdel-Akher and Hartley proposition [14]. 
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5. Calculation of displacement and bending moments 

Solution of the set of algebraic equation allowed to determine suitable boundary 
variables. Basing on the same boundary integral equation (1) it is possibile to cal-
culate deflection at the arbitrary point of plate domain, hence coefficient )(xc  is 
equal to one. Plate deflection can be expressed as the sum of part depended on 
boundary variables and part depended on external loading: 

( ) ( )pwww   += B  (26)

The bending and twisting moments are defined according to thin plate theory -
for example  
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where ( )21, xxw  is the plate deflection at the point about coordinates 21, xx . Hence 
second derivatives of displacement take place in boundary integral equation (1). 
The bending moment may be expressed as the sum of parts connected with bound-
ary variables and loading: 

( ) ( )pMMM
iii xxx += B  i = 1, 2 (28)

The twisting moment is expressed similar: 

( ) ( )pMMM xxxxxx 212121
+= B  (29)

The parts of equations (28) and (29) connected with boundary variables can be 
evaluated numerically. Number of twelve Gauss point is applied in the analysis. 
Next, the integrals connected with external loading p acting on a plate surface must 

be considered:∫
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. These integrals can be 

evaluated using method proposed by Abdel-Akher and Hartley [14]. 

6. Summary 

Static analysis of thin plates by the boundary element method was presented in 
the paper. Physical boundary conditions were introduced. The boundary integral 
equations were formulated in singular and non-singular approach. In present for-
mulation of plate bending it is no need to introduce equivalent shear forces at the 
plate edges and concentrated forces at the plate corners. It is element of originality 
in relation to classic formulation of thin plate bending problem. Presented approach 
may be also useful to static and dynamic of plates resting on internal supports: 
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pillars, linear and curvilinear continuous supports [3, 16, 17]. These types of bend-
ing problems can be solved using conception of Bèzine [3, 16], in which additional 
collocation points are applied inside the plate domain. The second part of elabora-
tion includes numerical examples described static analysis of thin plates using 
curved, simplified boundary elements.  
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