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Abstract. Static analysis of Kirchhoff plate by the Bound&fgment Method is presented
in the paper. The Bettie theorem is used to ddtieeboundary integral equation. Simpli-
fied curved elements are introduced. Modified apphoof boundary integral equation
formulation is adopted in which there is no neethtmduce the equivalent shear forces at
the boundary and concentrated forces at the plateecs. The collocation version of
boundary element method with singular and non-dargpproach is presented.

Introduction

The Boundary Element Method (BEM) was created asmapletely independ-
ent numerical tool to solve engineering problems2]1 The BEM do not require
the all domain discretization but only the boundafya considered structure. The
Boundary Element Method is often used in the thedrdyoth thin and thick plates
and is particularly suitable to analyse the platkearbitrary shapes and rested on
internal supports. Analysis of plate bending u€tM was introduced by Bezine
[3] and Stern [4] for Kirchhoff plate theory and Wgnder Weeén [5] for the thick
plate theory. Okupniak and Sygulski [6] used fundatal solution of Reissner
plate proposed by Ganowicz [7]. Altiero and Sik&dql] and Debbih [9, 10] pro-
posed BEM to plate bending problems. Beskos [1HnVliabadi and Young [12]
applied BEM to dynamic problem of plates. Some argttpresent a modified ap-
proach of thin plate analysis. El-Zafrany, Debhitd Fadhil [13] assumed non-
zero distribution of stress over the plate thickndsbdel-Akher and Hartley [14]
worked out the method of fundamental function iré¢ign connected to external
distributed loading. Guminiak, Okupniak and Sygulgb] assumed a physical
boundary condition also discussed in this papeséht paper includes a modified
formulation for bending analysis of plates, in whibree geometric and three stat-
ic variables at the plate boundary are considekpglication of curved boundary
elements to structural analysis was proposed byb@rand Aliabadi [2]. Authors
proposed three-node continuous and discontinuoasirgtic elements also dis-
cussed in this paper. In the paper curved, sinpliioundary elements are intro-
duced into the thin plate analysis. This part @belations includes theoretical
aspect of thin plate bending problem using the dannelement method.
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1. Integral formulation of thin plate bending in modified approach

On the plate boundary, there are considered fofigwariables: the shear force
T,, bending momenM ,, twisting momentM , and deflectiorw, angle of rota-

tion in normal directiong,, and angle of rotation in tangent directigpn. Only two

of them are independent. The boundary integral temuas derived using Bettie
theorem. Two plates are considered: infinite platghjected unit concentrated
loading and the real one. As a result the bountldegral equation is in the form
[15]:

o) Tx) + [ [T (7,3 [0, (y) = M. (v, X) 22, (y) = M (7,0 [, ()] T (y) =
= I[T (V) TV () = M, () T8, (%) = M () 5 (y, )| e (y) + 1)
+[ ply) W (y,x) @Q(y)

where the fundamental solution of biharmonic equmtii‘w = (1/D)@B(y -x) is
given as a Green function

2

. 1
w (y,x):B;—nlnr (2)

for a thin isotropic plates = |y - x|, 0 is Dirac delta and = (E hp3)/(12 (1—v§ ))
is a plate stiffness. The coefficien{x) depends on localization of pointand
c(x) =1, whenx is located inside the plate regiar(x) = 0.5, whenx is located on
the smooth boundary argfx) = 0, whenx is located outside the plate region.

Fig. 1. Distribution of the support reaction - ai@sand present approach
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The second equation can be derived by substitutingit concentrated force
P" =1" unit concentrated momemt =1". It is equivalent to differentiate the first

boundary integral equation (1) ardirection in poini on a plate boundary.
Idea of the proposed approach and formulation ahdary integral equation in
plate bending is shown in Figure 1.

2. Boundary conditions

The boundary conditions for clamped edge are foatedl as follows [15]:
w=0,¢,=0,¢,=0,M, =0 (3)

The unknown variables are: the bending momdntand the shear forcg, .
For simply-supported edge the boundary conditiahhe form [15]:

w=0,¢,=0,M,=0,M =0 (4)

The unknown values are: the shear fofgeand the angle of rotation in directian

[
Free edge can be described by the following boynctamditions [15]:

T,=0M_,=0,M =0 (5)

The unknown variables are: the deflectianand the angles of rotatiog, , ¢..
Because the relation betwegpand w is known, ¢, = dw/ds, there are only two
independent valuesn and ¢,,. The parametepw(y)/ds can be calculated ap-

proximately by constructing a differential expressiusing deflections of three
neighbouring nodes.

3. Types of boundary element

Definition of curvilinear boundary element may hffedent. It is possible to de-
fine geometry of element considering three nodahtgaand only one collocation
point connected with relevant physical boundaryeallhis type of element can be
called as curved, “constant” type. The collocatpmint may be located slightly
outside of plate edge (Fig. 2a) or exactly on tkenent (Fig. 2b).

Geometry of the element is defined using polynomiiuaction, described in

standard coordinate system 1,0,1). The functions are in the form:

1 1
N1=50@—0)N2=1—05N3=50@+0) (6)
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Fig. 2. Curved boundary element of constant typeoin-singular and singular definition

Another type of curved element is typical isoparaimeelement with three
geometrical nodes and three nodes connected withbk boundary variables

(Fig. 3).

real element
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Fig. 3. Continuous, curved boundary element indargformulation

Discontinuous boundary element is defined if lazion of external physical
nodes (collocation points) does not cover with geiital nodes (Fig. 4).

real element
y matrix element
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Fig. 4. Discontinuous, curved boundary elementrigidar formulation
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The geometry of this element is defined using fiamst describing by equation (6).
Suitable boundary variables taking a stand in bagnéhtegral equation (1) are
defined according to following functions [2]:

N. = In[ﬂln—l+2b)

' 20l -a-b)dfi - 2a)

S ™
J. = lntin+1 -2b)

* 20 -a-b)di -2b)

wherel is the length of the matrix elememtJ(-11), a is the distance between

first nodes: geometrical and physidals the distance between last nodes: geomet-
rical and physical (Fig. 4).

4. Construction of set of algebraic equation

A plate edge is discretized using boundary eleméntmatrix notation the set
of algebraic equation has the form:

GB=F (8)

where G is matrix of suitable boundary integralB, is the vector on unknown
variables andF is right-hand-side vector. If on the part of pléeundary free
edge takes place, then equation (8) may be presttibthe form:

GBB GBS B I:B
= 9)
A -1 | @ 0
wherel is unit matrix andA is matrix constructed using suitable differencaaeq

tion. These equation will be discussed in point. 4il present formulation of

boundary integral equation, angles of rotatioraimgent directiorps are additional
unknown variables.

4.1. Construction of characteristic matrix

The boundary integral equation will be formulatadsingular and non-singular
approach. To construct the characteristic mafixintegration of suitable funda-
mental function on boundary is needed. Integrasaione in local coordinate sys-
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tem n;, s connected with™ boundary element and next, these integrals must be
transformed ta, s coordinate system, connected withelement (Fig. 5).

Let it be assumed, that boundary integral equatidinbe formulated in non-
singular approach. The collocation point is locastightly outside of the plate
edge. Localization of collocation point is definegt the paramete® or non-
dimensional parametexr This parameter can be definedsas dc, wherec is the
length of element chord.

To calculate elements of characteristic matrixagmglied following methods:

a) classic, numerical Gauss procedure for non-gliagonal elements,
b) modified, numerical integration of Gauss metliodquasi-diagonal elements

[6].

Boundary integrals on curved element are calculatedrding to Gauss meth-
od:

VY =T

fD(s)mszifﬂ(q)m(q)quéwjDfﬂ(/yj)m(nj) j=1,2,3.m (10)

where f " is suitable fundamental functiom is the number of Gauss poii is
the weight off" point, J(77) is Jacobian of transformation, angdis abscissa of"
point. Fundamental functions are expressed usisgcoordinate system. Then, all
coordinates of Gauss points are expressed as:

S = N, ) 5+ N )5+ N )

where coordinates of three geometrical nodes aréd: us, 5. Jacobian of transfor-
mation is expressed as:

o[

Integrals of fundamental functions are calculatsithgin;, s coordinate system,
connected with" boundary element. Then, they are transformed, & coordinate
system on the following way:

¢, = ¢, (&, + ¢, [T, (13)

n) = N1(’7) mi(l) + Nz(’7) Dhi(z) + N3(’7) mi(s) (11)

— 2
MnDk—MnDi[(l:fn+M§I:(l‘,ns+2D\/I5$ e, L& (14)

MI, =M -M)e, &, +M Y et -2 (15)

NSk
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T = TrE ¢, +TS1D (e, (16)

ne

wherec,, =cos(n,,n) andc, =cos(n,,s ).

Fig. 5. Construction of characteristic matrix

To calculate quasi-diagonal integrals using noindisx approach, Gauss
|method of integration also can be used. Because s fundamental functions
have extensive gradients in circumvolution of codltton point, the classic Gauss
method does not give sufficiently accurate residence, the manner proposed by
Okupniak and Sygulski is applied [6]. Authors preed inverse localization of
Gauss points in domain of integration (Fig. 6).

F- F “— fundamental function
m — number of Gauss point

<O - b> domain of integratign
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Fig. 6. Calculation of quasi-diagonal integrals gsinodified Gauss method
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In case of a free edge, it is needed to extendhafacteristic matrix to elements
connected with angle of rotation in tangent di@t®s. The characteristic matrix
will have extended dimensiohl x N, where: N = N + N,, andNs is number of

additional geometrical parameteps Additional boundary integrals are localized
in matrix Ggs according to matrix equation (9).

In singular approach, when the collocation pointosalized exactly on the
boundary, the quasi-diagonal boundary integralsaleulated differently. The non
quasi-diagonal integrals of characteristic matrie @&alculated using standard
Gauss method. The fundamental functinhas the singularity of the second or-

der. For the clamped edge, integrals of functionsg, and W”can be calculated
using standard or modified Gauss procedure. Tlegiat

2

{ln(r) +“_} el (17)

fﬁnDEdF: 2
r r

=
4D ;
where: r =+/n? + s? , may be evaluated approximately, assuming smailature

of element. Then, it is possible to assume thedrpatem goes to zero. Hence, the
function described by the equation (17) will halve torm:

D 1
=——[nlr
¢, =, n(r) (18)
and integral of expression (18) may be evaluatedytioally as integral on line
elementd, which is parallel to thg axe (Fig. 8).
For the edge resting on continuous linear supparigly-supported edge), inte-

gration of fundamental functions”and W" can be done using classic or modified
Gauss procedure (Fig. 6). The elements of chaistitematrix, which are respon-

sive to integration of functiond/ ! and M may be calculated using method of

rigid body movement. To calculate these elemehtsbbundary integral equation

(1) must be considered. It is assumed, that allnthn quasi-diagonal boundary
integrals are calculated, external loading actingalate surface is equal to zero
(p =0, hence all of boundary variables are equaet@) and the rigid rotation of

plate is done (Fig. 7). Hence, the boundary integmaation (1) after discretization

will have the form:

'ze s mimr, =0 (P7=17) (19)
k=1 Mk
'ze g oM ir, =0 (M7=17) (20)

k=1 Mk
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Fig. 7. Calculation of quasi-diagonal integrals gsimethod of the rigid body movement:
rigid rotation

For the free edge, integration of fundamental fiomst T~ and T” can be cal-
culated using rigid movement - rigid translatidnslassumed, that all the non qua-
si-diagonal boundary integrals are calculated, regieloading acting on a plate
surface is equal to zerp € 0, hence all of boundary variables are equaeto)
and the rigid translation of plate is domg:> 0, ¢, = 0 andgs = 0. Hence, equation
(1) after discretization will have the form:

le

Yol T =0 (p7=1) (21)
- k

> ) O, =0 (MY=1)

& b ] n k n (22)

Angle of rotation in tangent directigh on a plate boundary depends on bound-
ary deflectionw,. Additional parametergs, which are elements of matri, are
calculated by construction difference expressiosiagudeflection of three neigh-
bouring physical nodes (Fig. 8). These expresdiane the form:

A = 2d,, [d} EI\E) +d?, ! —-d? m{)m) —2d; [, N\E) +d? EI\E) —di m‘g_ﬂ
° d; G, [, +d,.,)

(23)
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d? B’Vlgm) -d? B’Vlgi) +d?, D’Vlgi) -d DN&SH)
d; W, E(di + di+1)

pl) = (24)

gl = ¢ E}\gﬂ) +2d; [d,y - +d m\g_l) -d’ II)\E) -2d,, [ E)\g) -’ m\{j) (25)
) di |ﬂi+l |:(:kji +di+l)

In present formulation of boundary integral equadicthe characteristic matrix
G is fully populated. For large number of boundasments and mixed boundary
conditions, matriXxG may be wrong conditioned.

Fig. 8. Construction of difference expressions {2%)

Expression (23) is applied for the first bounddgnmeent on a free edge. Expression
(24) is used for all internal boundary elementenfrsecond to last but one. Ex-
pression (25) is applied for the last boundary elettaking place on a free edge.

4.2. Construction of right-hand-side vector

It is assumed, that constant loadmgs acting on a plate surface. A contour of
loadingp was expressed in the poligonal form. Suitablegrats have the form:

pf w'[8Q and p.[v_vD [dQ . These integrals can be evaluated analyticallprakc
Q Q

ing to Abdel-Akher and Hartley proposition [14].
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5. Calculation of displacement and bending moments

Solution of the set of algebraic equation allowedétermine suitable boundary
variables. Basing on the same boundary integradtému (1) it is possibile to cal-
culate deflection at the arbitrary point of platendhin, hence coefficient(x) is

equal to one. Plate deflection can be expressdaleasum of part depended on
boundary variables and part depended on exteradirig:

W:W(B)+ w(p) (26)

The bending and twisting moments are defined agegrid thin plate theory -
for example

0"w(x, %) . 0°w(x,%,)
M , X, ]=-D +v
o0 %) e th e (27)
where w(x,,x,) is the plate deflection at the point about coaaths x,, x,. Hence
second derivatives of displacement take place im8ary integral equation (1).
The bending moment may be expressed as the suartsfgonnected with bound-
ary variables and loading:

M, =M, (B)+M,(p)i=1,2 (28)
The twisting moment is expressed similar:
M X1Xo = M X1Xo (E) + M X1X2 (p) (29)

The parts of equations (28) and (29) connected hatimdary variables can be
evaluated numerically. Number of twelve Gauss pa@napplied in the analysis.
Next, the integrals connected with external loadlirsgting on a plate surface must

2 2,0 2,0
aZWD az—WEdQ and | 0"
0%, 0°X, 0 0%,0X,
evaluated using method proposed by Abdel-Akhertardley [14].

be considered: [8Q . These integrals can be
Q

@0, |
Q

6. Summary

Static analysis of thin plates by the boundary eleinmethod was presented in
the paper. Physical boundary conditions were intced. The boundary integral
equations were formulated in singular and non-dargapproach. In present for-
mulation of plate bending it is no need to introel@guivalent shear forces at the
plate edges and concentrated forces at the platerso It is element of originality
in relation to classic formulation of thin platenoing problem. Presented approach
may be also useful to static and dynamic of plagsting on internal supports:
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pillars, linear and curvilinear continuous supp@8sl6, 17]. These types of bend-
ing problems can be solved using conception of B2f3, 16], in which additional
collocation points are applied inside the plate dmmThe second part of elabora-
tion includes numerical examples described statiglysis of thin plates using
curved, simplified boundary elements.
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