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Abstract. In this work numerical solutions of fractional EtlLagrange equations describ-

ing free motion are considered. This type of equmsticontains a composition of left and

right fractional derivatives. A reflection operaisrapplied to obtain relations between the
Euler-Lagrange equations. In addition we verify ttependence between the respective
numerical schemes using the same operator. Ininbedart of paper the examples of the

numerical solutions are shown.

I ntroduction

The paper is devoted to the issue of humericalyaisabf ordinary differential
equations containing a composition of left and triffactional derivatives. This
type of equations is obtained when the minimumoacprinciple and fractional
integration by parts rule are applied. There arenynauthors who considered
a fractional Euler-Lagrange problem. Riewe in [fyeastigated nonconservative
Lagrangian and Hamiltonian mechanics and for tlases formulated a version of
the Euler-Lagrange equations. On the other hanthwaj in [2-4] considered dif-
ferent types of variational problems, involving Re&nn-Liouville, Caputo and
Riesz fractional derivatives, respectively and bewtd the corresponding Euler-
-Lagrange equations and discussed possibilitieddecribing boundary conditions
in each case. Klimek in [5] proposed the sequeh@@rangian and Hamiltonian
approaches to this problem. Other applicationgadtional variational principles
are presented in [6, 7]. The important problemas ho find the solutions of the
fractional Euler-Lagrange equations. Using the dixmint theorems [8], one can
obtain analytical results represented by a seffiedternately left and right frac-
tional integrals. Klimek in [9] showed an applicatiof the Mellin transform for
this problem, but this solution is represented ksedes of special functions and
therefore is difficult to use in practical calcudats.

In references [10, 11] a numerical approach totwwlwof ordinary differential
equations with left and right fractional derivasves proposed. In our work, we
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shall present numerical solutions of the Euler-bage equations and equations
with the reflection operator.
1. Formulation of the problem

We consider the following fractional differentiadeations of ordeo [J (0, 1)
(known in the literature as the fractional Eulegtange equations [2-5, 8-11])

(°og b, £)t)=0 (1)
(°og, D )t)=0 2)

where operatordD® are the left and right fractional derivatives ineiRann-
Liouville (3) and Caputo (4) senses defined as [12]

(g f))=(izf)e) (o f)e)=(-p1E=f)e) 3)
(coz f)e)=(e D)) (oef)e)=(1E=D1)) ()

and operatorg® are fractional integrals of ordardefined in [12]

(I;ﬁf)(t):ij' —yg ot fort>a
i .

dr, fort<b

The following relations between both definition$ §8id (4) take place [12]
(b2, 1))
(o 1))

Equations (1) and (2) are supplemented by the adedpoundary conditions
fla)=F.. flb)=F, (7)

(CD:+f)<t)+%f<a>

(o 1)0)+ L7 1 (o)

r(1-a)

(6)

In this work we use the reflection opera@mpon the intervak [1[a, b]

Qf)t)=f(a+b-t) (8)
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This operator acts on the fractional differentipémtors as follows [13]
QD% f)(t)=(°DE Q1 ()

( =(°pz, Q1))
t)=(oz Q1))
)=(0% Q1))

(9)

2. Numerical solution

In order to develop a discrete form of equationsafid (2), the homogenous
grid of nodes is introduced

a=t, <t <t, <...<t <t <...<ty =b, t =t, +iAt (10)

A value of functiorf at the moment of timgis denoted ak =f (t;).

2.1. Discrete form of equation (1)

At first we determine numerical schemes for bo#ttional operators occurring
in eq. (1). The value of derivative (6) (interngleoator) at the moment of tinte
can be approximated as [14]

(YR AL ) MO N S I

= °Tr(-a) Tl-a)) -1

L

G-t)°, 1 Sfu-fF 1

O fyt + dt

‘ri-a) r-a)g o J(ti—'[)a (11)
N ) S SR < /g E(t -t —tJﬂ)1

“r(i-a) rl-a)g A

:(m)-ﬂ;nvl(i,n

1-a)i™® +( -1 —i+@ for j =0
vi(i,j)= 1_a) =2 =2l = ) (- -0 forj=1...,i-1(12)
1 for j =i
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Substituting g(t) = (D§+f)(t) in eq. (1), we can directly discretise the conposi
of operators

ty

oz alt] =ty [ e

t i

(°og g, 1))

t=t;

1 Ndg, _g_‘ju 1
O > == 'I dt

F(l—or) = At i (T_ti)a (13)
_ -1 Nz_lgjﬂ'gj l:(tj+1_ti)l_a _(tj _ti)l_u
ri-o)< At 1-a

where
1 for j =i
VV1("")=r(21_ )(J—i+1)1‘“—2(1—i)1‘“+(j—i—1)1“’ for j=i+1..,N-1
YN =i -2 - (N-i ) for j=N

(14)

Next, substituting the discrete form of derivat{l4) into (13), the following form
IS obtained

(ot oz)e),, ol ™3 wh)Tuliid) a9

In order to solve eq. (1) numerically with boundaonditions (7), it is necessary to
solve the following system of algebraic equations

f,=F,
(At)_zui{wl(i, j)ZJ:vl(j,k) fk} =0 fori=1..N-1 (16)
fN _ Fb]—l k=0

2.2. Discrete form of equation (2)

This method is similar to the previous case. Atltlbginning we discretise the
operator(DS_ f )(t) at timet; as
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a — (tN -1 B -1 K f' T)
Db_f(qt:ti =Ty ri-a) * F(l—a);':(T—ti)“ &«
(ty —t) -1 5 fa- iti+1 1
0f i drt
"r-a) ri-a)4 ot Jj(T ) (17)
_ (N -t ) N -1 S fuf E(tiﬂ tl)l_a _(tJ )
“rl-a) r-a)< ot 1«
N
= (Bt v, (1, §)
j=i
where
for | =i

v,(i,j)= 1 (j-i+2)f=2(j i) +(j-i-2" for j=i+1...,N-1

r2-a) (- a)(N =iy +(N =i =1 =(N =i} forj=N
(18)
and next
oz, o2 1)6) ., = (o2 o)) f o
1 3 i1~ 9; 1
r(l—a); At f‘:(ti_.[)a ar (19)
1 G9ug -t )1 (i J“rl)1
_I‘(—a);) At E( -a
:(At)_ngjWZ(i,j)
where
( 1) i for j=0
w(i,j)=— ) (- ) (—J)l‘°+(i—1—1)1‘° for j =1...i -1 (20)
for j =i

The discrete form for the operators compositioedn (2) we can write (after sub-
stitution the discrete form of (17) into (19)) afidws
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oz o2J6),, ol 3w

j=0 k=j

N
vo(j.k) fk} (21)
=]

Similar to the previous equation, it is necessargdlve the following system of
equations

f,=F,

(at)? 2[ sz jk)f } 0 fori=1..,N-1 (22)
j=0

fy =F,

2.3. Numerical solutions of equationswith thereflection operator

In this subsection we present an application déctibn operatoQ (8) acting
on eq. (1)

(@D D, £)(t)=0 (23)
Taking into account relations (9), one can write(&9in the following form
(°pg, b2 @t )t)=0 (24)

Now, we show identity of equations (23) and (24ngshumerical approach.
For this purpose we present numerical solutionsciwtare determined using
schemes (16) and (22). Let us note that opefatacts as follows

Qt|t=ti =Qt =ty (25)
(Qf)(t]tzti =Qf; =fy

Then, we get

(@°o5 02, 1)), DQ[ At Zi{ ivl(j,k)ka

i k=0

) Z{ i,j)kizovl(J,k)fk}

i

(26)

After changing the order of summation we can wiheabove formula as
i N
(@°pg oz, £)¢) D(At)‘z“z[wl(N =i,N= )Y w(N-j,N-k) f] (27)
1 k=J

j=0

Hence, we change in scheme (21) only trby fy—« and we obtain
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(o2 De. Q1))

1

Oty

j=0

[w2<

E

(28)

Also, in both equations (23) and (24) the valuedbaindary conditions must be

replacedf(a) = F, andf(b) = F, (in numerical approacti; = F, andfy = F,).
Analysing the values of weight &f« in (27) and (28), one can note that they

are equal and both schemes are equivalent. Onaffian that the following rela-

tions between coefficients occurr

w1, )= wi (N =i,N - ),

In a similar way one can obtain other schemesdaagons in which other compo-
sitions of fractional differential operators appear

3. Examples of computations

Vi, 1) =w(N-i,N-j)

(29)

In this section the numerical results of calculagi@re presented. In presented
solutions of equations the following parametersehbgen assumed:= 0,b = 1,
a=1{0.1, 0.3, 0.5, 0.7, 0.9, 0.999N = 1000. The values of boundary conditions
are following:F, = 0,F, =1 for eq. (1) an#, = 1,F, = 0 for eq. (2).

In Figure 1 the solutions of equations (1) andf@2)different values of the pa-
rametera are presented. One can see that both solutiorsysmaetrical.
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Fig. 1. Solutions of eq. (1) (left-side) and eq. ((ght-side)
Conclusions

In this work the fractional Euler-Lagrange equasiovere considered. This type
of equation includes a composition of the left &mel right fractional derivatives.
The analytical solutions of these equations arécdlIf to apply in practical calcu-
lations. Numerical solution is an alternative agmioto the analytical one. In this



24 T. Blaszczyk, M. Ciesielski

study the numerical schemes were presented tonatbtaisolution for two cases of
the fractional Euler-Lagrange equations. The casidl equations are related via
the reflection operator. This relationship was gisoved for numerical schemes.
Analysing solutions presented in Figure 1 we oleséimat the solutions of equation
(1) are a symmetrical reflection of the solutiohgguation (2).
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