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Abstract.  In this paper, the results of numerical studies on the local and global instability 
and vibration of a geometrically nonlinear column subjected to Euler’s load are presented. 
The Hamilton principle was used to formulate the boundary problem. Due to the geomet-
rical nonlinearity, the solution of the problem was performed by means of the perturbation 
method. The magnitude of the bifurcation load of the nonlinear column, the local and global 
instability regions and characteristic curves have also been presented.  

Introduction 

The local and global instability of geometrically nonlinear systems is a result of 
a comparative analysis on bifurcation load of geometrically nonlinear column and 
critical load value of corresponding linear column. The external load value at 
which the loss of rectilinear form of static equilibrium occurs is designated in the 
function of flexural rigidity factor. In numerical studies [1-3], it was proved that 
with lower flexural rigidity factor the local instability occurs for geometrically 
nonlinear column (the bifurcation load value of geometrically nonlinear column  
is smaller than critical load of corresponding linear system). In addition to theoret-
ical considerations, the experimental studies were performed. In papers under the 
direction of Tomski [1, 2] the result of experiments on natural vibration frequency 
in a function of external load value were presented, as a confirmation of the local 
and global instability phenomenon. In the system presented in this paper the  
bifurcation load value may depend not only on flexural rigidity factor but also on 
localization of the pin and stiffness of connection of internal member. The formu-
lation of the problem presented in this paper was obtained by means of Hamilton 
principle [4]. The solution of the problem due to nonlinearity of the column  
with rectilinear form of static equilibrium was performed by use of the small  
parameter method [5]. The solution of natural vibration of geometrically nonlinear 
columns by means of small parameter method was presented by Roordy and  
Chilvera [6], Tomski [1-3, 7, 8] and Przybylski [9]. The perturbation method  
used in order to solve the nonlinear differential equations was presented by  
Nayfeh [10]. 
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1. Formulation of the problem 
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Fig. 1. Model of the column under consideration: a) geometrically nonlinear  

and b) geometrically linear 

The physical model of considered geometrically nonlinear column (Fig. 1a) 
may be composed of two coaxial tubes (or tube and rod) or be a flat frame. In Fig-
ure 1b the corresponding linear column is presented. The geometrically linear sys-
tem is devoided of the internal two segments member. Figure 2 shows the compu-
tational model of the considered nonlinear column, subjected to Euler’s load. 
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Fig. 2. The nonlinear column under consideration subjected to Euler’s load 
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In the nonlinear column, rods (1) and (2) are joined together by a pin, strength-
ened by a rotational spring of stiffness C. The pin strengthened by a rotational 
spring represents in a physical model the connection of two rods. Rod (3) is dis-
cretely connected on both ends to the structure. The external load P is axially ap-
plied to the free end of the column (at the joint of rods (2) and (3)). The rods have 
a length l1, l2, l3 respectively 

The problem is formulated on the basis of Hamilton principle in the following 
form:  
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The kinetic Ek and potential Ep energy are expressed by the following formulas: 
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where: Ei - Young modulus, Ji - moment of inertia, Ai - cross section area, 
ρi - density of the material, C - rotational spring stiffness, P - external load. 

The formulas (2) and (3) are subjected to the Hamilton principle (1). After per-
forming variational and integration operation, and assuming that virtual displace-
ment: longitudinal ),( txU iiδ  and transversal ),( txW iiδ for 3,2,1=i ; are arbi-

trary and independent for 0 < xi < l the following formulas were obtained: 
– equation of motion in transversal direction 
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– equation of motion in longitudinal direction 
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– equation of immutability of strain along the length of the element 
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After integration of equation (6), the axial force is defined as follows: 
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The equation (4) after introducing (7) has the following form: 
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In equation (8) roman numerals define the derivatives with respect to space var-
iable xi and dots define the derivatives with respect to time t. Introducing into 
Hamilton principle the boundary conditions in the form: 
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the following natural boundary conditions were obtained: 
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After introducing the following non-dimensional values: 
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the problem has been solved by means of the small parameter ε method. Whereby 
longitudinal and transversal displacements, axial force and vibration frequency of 
each rod are written in a power series 
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Magnitudes from equations (12a-d) are introduced into equation of motion, axi-

al force and boundary conditions. Then, terms are grouped at the same power of 
the small parameter ,ε  which leads to infinite sequence of equations. The solution 
presented in this paper was obtained on the basis of system of equations with small 
parameter in the first power. 

2. Results of numerical calculation and analysis 

In the program of numerical calculations prepared on the basis of  
a mathematical model, the influence of selected physical and geometrical system 
parameters on first vibration frequency has been determined. In Figures 3a and 3b 
the relation between bifurcation load and vibration frequency of geometrically 
nonlinear and geometrically linear (LC) column has been presented, for different 
flexural rigidity factor rm value. The results of numerical calculation are presented 
in the central localization of the pin which connects internal rods of the geometri-
cally nonlinear column and in different rotational spring stiffness value.  

The curve plotted in Figures 3a and 3b marked as LC, illustrates the change of 
vibration frequency as a function of external load for geometrically linear system. 
The other curves correspond to the geometrically nonlinear column. On the axis of 
ordinates - the axis of external load value, the bifurcation load points (black) for 
geometrically nonlinear system and critical load point (black/white) for geometri-
cally linear system have been marked. Comparing the loads of both systems, it can 
be noted that there exists a rotational spring stiffness below which irrespective to 
flexural rigidity factor the bifurcation load of geometrically nonlinear column is 
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smaller than critical load value of geometrically linear system - this is called the 
local instability. At higher spring stiffness the critical (bifurcation) load of the line-
ar column is smaller than bifurcation load of the nonlinear system.  
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Fig. 3.The local and global instability on load - frequency plane in central localization  

of the pin and different flexural rigidity factor: a) rm = 0.4, b) rm = 0.2; rw = 1 

This phenomenon is called the global loss of the rectilinear form of static equi-
librium. The increment of the rotational spring stiffness causes not only the in-
crease of bifurcation load value but also vibration frequency of the nonlinear sys-
tem. The bifurcation load and vibration frequency of the geometrically nonlinear 
system is highly dependent on rotational spring stiffness value. When the rotation-
al spring stiffness is greater than 5 (cb > 5), irrespective to localization of the pin, 
the change of vibration frequency and bifurcation load value is negligible. After 
change of the localization of the pin, it has been concluded that, then the pin is 
localized near the free end of the column, the influence of the stiffness connection 
of two member segment (rods 1 and 2) on bifurcation load value at which vibration 
frequency is equal to zero is reduced.  
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Fig. 4. The bifurcation load p as a function of flexural rigidity factor at different localiza-
tion of the pin: a) 5.02 =d and b) 7.02 =d ; rw = 1 
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In Figures 4a and 4b the relation between bifurcation load of geometrically 
nonlinear column and critical load of corresponding linear system as a function of 
flexural rigidity factor has been presented. The flexural rigidity factor is within  
0 < rm < 1. The calculations have been performed for different localization of the 
pin which connects the internal rods and rotational spring stiffness constituting the 
geometrically nonlinear column. 

The continuous curve plotted in Figures 4a and 4b marked as LC illustrates the 
change of maximum external load of the geometrically linear column and the dot-
ted curves represents geometrically nonlinear system. Analyzing the maximum 
loads of both systems presented in Figures 4a and 4b it has been concluded that 
there is such a value of flexural rigidity factor rm below which irrespectively from 
rotational spring stiffness and localization of the pin, the bifurcation (critical) load 
of the geometrically linear column is greater than bifurcation load of the geometri-
cally nonlinear column. This phenomenon occurs for ( )mGRm rr ,0∈ . In this range of 

flexural rigidity factor the local loss of rectilinear form of static equilibrium oc-
curs. The limitation value mGRr  designates the point of intersection of the geometri-

cally linear and nonlinear load curve. In the range of flexural rigidity factor 
)1,( mGRm rr ∈ the global loss of rectilinear form of static equilibrium takes place. 

After moving the pin towards the free end of the column it has been noted that the 
influence of rotational spring stiffness on bifurcation load value is smaller. It also 
has been concluded that if the pin is localized near to the free end of the column 
the local instability region is decreased irrespectively from spring stiffness. 

Conclusions 

In this paper the divergence instability and vibration of the geometrically non-
linear cantilever column subjected to external load P with constant line of action 
has been presented. Bifurcation force value as dependent on the system parameters 
as well as local and global instability regions have been determined. After series of 
numerical calculations and analysis of the results, it has been concluded that the 
significant influence on type of instability has the localization of the pin which 
connects internal rods and stiffness of this connection. It was observed that, rota-
tional spring stiffness above 5 causes insignificant change of vibration frequency 
and bifurcation load value. The change of localization of the pin towards to the 
free end of the column, causes stabilization of maximum load value apart from 
rotational spring stiffness. For the type of instability of the column, the stiffness 
and localization of connection of internal rods is responsible. It has been conclud-
ed that it is better to use the linear system when its critical load value is greater 
than the bifurcation load of the nonlinear system and inversely. 
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