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Abstract. In this paper, the results of numerical studiegh® local and global instability
and vibration of a geometrically nonlinear colunubjected to Euler’s load are presented.
The Hamilton principle was used to formulate thedmary problem. Due to the geomet-
rical nonlinearity, the solution of the problem waerformed by means of the perturbation
method. The magnitude of the bifurcation load &f tionlinear column, the local and global
instability regions and characteristic curves halge been presented.

Introduction

The local and global instability of geometricallgniinear systems is a result of
a comparative analysis on bifurcation load of geticedly nonlinear column and
critical load value of corresponding linear colunThe external load value at
which the loss of rectilinear form of static egoilum occurs is designated in the
function of flexural rigidity factor. In numericatudies [1-3], it was proved that
with lower flexural rigidity factor the local indtdity occurs for geometrically
nonlinear column (the bifurcation load value of getrically nonlinear column
is smaller than critical load of corresponding éngystem). In addition to theoret-
ical considerations, the experimental studies vpeméormed. In papers under the
direction of Tomski [1, 2] the result of experimgmn natural vibration frequency
in a function of external load value were presenteda confirmation of the local
and global instability phenomenon. In the systerasented in this paper the
bifurcation load value may depend not only on flekuigidity factor but also on
localization of the pin and stiffness of connectairinternal member. The formu-
lation of the problem presented in this paper watained by means of Hamilton
principle [4]. The solution of the problem due toniinearity of the column
with rectilinear form of static equilibrium was pemmed by use of the small
parameter method [5]. The solution of natural \iiloraof geometrically nonlinear
columns by means of small parameter method wasepted by Roordy and
Chilvera [6], Tomski [1-3, 7, 8] and Przybylski [9The perturbation method
used in order to solve the nonlinear differentiguaions was presented by
Nayfeh [10].
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1. Formulation of the problem
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Fig. 1. Model of the column under considerationg@ymetrically nonlinear
and b) geometrically linear
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The physical model of considered geometrically m@ar column (Fig. 1la)
may be composed of two coaxial tubes (or tube adiler be a flat frame. In Fig-
ure 1b the corresponding linear column is preserited geometrically linear sys-
tem is devoided of the internal two segments menthgure 2 shows the compu-
tational model of the considered nonlinear colusuijected to Euler’s load.
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Fig. 2. The nonlinear column under consideratidrjestted to Euler’s load
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In the nonlinear column, rods (1) and (2) are jditegether by a pin, strength-
ened by a rotational spring of stiffne€s The pin strengthened by a rotational
spring represents in a physical model the conneaifatwo rods. Rod (3) is dis-
cretely connected on both ends to the structure.eiternal loadP is axially ap-
plied to the free end of the column (at the joihtads (2) and (3)). The rods have
a lengthly, I, 13 respectively

The problem is formulated on the basis of Hamilpoimciple in the following
form:

4
5] (EX-EP)dt=0 1)
4
The kinetic E and potential Eenergy are expressed by the following formulas:
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where: E; - Young modulus,J; - moment of inertiaA - cross section area,
P - density of the materia@ - rotational spring stiffnes®, - external load.
The formulas (2) and (3) are subjected to the Hamiprinciple (1). After per-
forming variational and integration operation, assuming that virtual displace-

ment: longitudinal dJ, (x,t) and transversabW, (x,t)for i = 1,2,3; are arbi-

trary and independent for Ox<< | the following formulas were obtained:
— equation of motion in transversal direction

W (x 1) _ cal "auim,t)g(avvi(xi,t)j]aw<xi,t)]+piAaZ\M(2xi,t):
ox.* 0X; AN 0X; ot
i=1,2,3 (4)

EJ

— equation of motion in longitudinal direction

U, (x,t) = —S% —1}{"\’\’5()?*)} d =123 (5)
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— equation of immutability of strain along the lengththe element

2
EiAi U, (.0 LW | |y i=1,2,3 (6)
0x 0x 2 0x
After integration of equation (6), the axial forisadefined as follows:
2
_ oU, (x,t) . 1| oW (x,t) _
t)=-E i = i , 1=1,2,3 7
s(t) .A[ o +2{ o U (7

The equation (4) after introducing (7) has thedwihg form:
EJW" (x,1) +SEOW" (x.t) + o AW (x,) =0, =123 ®)

In equation (8) roman numerals define the deriestiwith respect to space var-
iable x; and dots define the derivatives with respect tcetimintroducing into
Hamilton principle the boundary conditions in tloem:

W 0.t) =W (x,.t]_, =Ws(0.t) =Wy’ (x;.t),_, =U,(0t)=U,(0t)=0
W, (I;,,t) =W, (0,t) W, (1,,t) =W, (1,,t)
W' (), =W (xt)] U, (1, t)=U,(0t)
U,(1,,t)=U,(1,,t) (9a-k)

the following natural boundary conditions were datéal:
Ez‘]sz“ (Xz-t)‘ + E3‘]3\N3” (XS't)‘x = =0
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After introducing the following non-dimensional uals:
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the problem has been solved by means of the sraaheters method. Whereby
longitudinal and transversal displacements, axiatd and vibration frequency of
each rod are written in a power series

WlET)= 3w, 60+ OE™) 1 (60)=8) 3£, E)+ O™

n
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K; (T) =k, + Z 52nki2n(r)+ o™  af = wOiz + Z gzna)lZnZ +0(g2") (12a-d)

n=1 n=1

Magnitudes from equations (12a-d) are introducéa @guation of motion, axi-
al force and boundary conditions. Then, terms aoeiged at the same power of
the small parametes, which leads to infinite sequence of equations. 3tlation
presented in this paper was obtained on the basistem of equations with small
parameter in the first power.

2. Results of numerical calculation and analysis

In the program of numerical calculations prepared the basis of
a mathematical model, the influence of selectedsighy and geometrical system
parameters on first vibration frequency has beeaardéned. In Figures 3a and 3b
the relation between bifurcation load and vibratfoequency of geometrically
nonlinear and geometrically lineat®) column has been presented, for different
flexural rigidity factorr,, value. The results of humerical calculation arespnted
in the central localization of the pin which contseimternal rods of the geometri-
cally nonlinear column and in different rotatiosaking stiffness value.

The curve plotted in Figures 3a and 3b marketdl@sillustrates the change of
vibration frequency as a function of external Idadgeometrically linear system.
The other curves correspond to the geometricalhfinear column. On the axis of
ordinates - the axis of external load value, tHarbation load points (black) for
geometrically nonlinear system and critical loadnhpdblack/white) for geometri-
cally linear system have been marked. Comparindodds of both systems, it can
be noted that there exists a rotational sprindnst#fs below which irrespective to
flexural rigidity factor the bifurcation load of gmetrically nonlinear column is
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smaller than critical load value of geometricailyelar system - this is called the
local instability. At higher spring stiffness thatical (bifurcation) load of the line-
ar column is smaller than bifurcation load of tlemlmear system.
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Fig. 3.The local and global instability on loadeduency plane in central localization
of the pin and different flexural rigidity factoa)r,,= 0.4, b)r,,=0.2;r, =1

This phenomenon is called the global loss of tletilneear form of static equi-
librium. The increment of the rotational springffeiéss causes not only the in-
crease of bifurcation load value but also vibrati@guency of the nonlinear sys-
tem. The bifurcation load and vibration frequendyttee geometrically nonlinear
system is highly dependent on rotational springnetss value. When the rotation-
al spring stiffness is greater thancs  5), irrespective to localization of the pin,
the change of vibration frequency and bifurcatioad value is negligible. After
change of the localization of the pin, it has beencluded that, then the pin is
localized near the free end of the column, thaugrice of the stiffness connection
of two member segment (rods 1 and 2) on bifurcdthad value at which vibration
frequency is equal to zero is reduced.
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Fig. 4. The bifurcation loagd as a function of flexural rigidity factor at difent localiza-
tion of the pin: a)d2 = 05and b)d2 =07:rw=1
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In Figures 4a and 4b the relation between bifuocatoad of geometrically
nonlinear column and critical load of correspondingar system as a function of
flexural rigidity factor has been presented. Thexdlral rigidity factor is within
0 <rp < 1. The calculations have been performed foredifit localization of the
pin which connects the internal rods and rotatiapaing stiffness constituting the
geometrically nonlinear column.

The continuous curve plotted in Figures 4a and dlked ad C illustrates the
change of maximum external load of the geometsidaliear column and the dot-
ted curves represents geometrically nonlinear systenalyzing the maximum
loads of both systems presented in Figures 4a bntl Has been concluded that
there is such a value of flexural rigidity factgybelow which irrespectively from
rotational spring stiffness and localization of fhie, the bifurcation (critical) load
of the geometrically linear column is greater th#rcation load of the geometri-
cally nonlinear column. This phenomenon occursrfan (0,r. ). In this range of

flexural rigidity factor the local loss of rectilar form of static equilibrium oc-
curs. The limitation value .. designates the point of intersection of the gedmet

cally linear and nonlinear load curve. In the rargjeflexural rigidity factor
r, O(rer.D the global loss of rectilinear form of static edgwilum takes place.

After moving the pin towards the free end of th&uom it has been noted that the
influence of rotational spring stiffness on bifuioa load value is smaller. It also
has been concluded that if the pin is localized nedhe free end of the column
the local instability region is decreased irrespety from spring stiffness.

Conclusions

In this paper the divergence instability and vitlmatof the geometrically non-
linear cantilever column subjected to external |@adith constant line of action
has been presented. Bifurcation force value asrale on the system parameters
as well as local and global instability regions dnéeen determined. After series of
numerical calculations and analysis of the resititbas been concluded that the
significant influence on type of instability hasethocalization of the pin which
connects internal rods and stiffness of this cotioeclt was observed that, rota-
tional spring stiffness above 5 causes insignificdrange of vibration frequency
and bifurcation load value. The change of locaimabf the pin towards to the
free end of the column, causes stabilization of imam load value apart from
rotational spring stiffness. For the type of indigbof the column, the stiffness
and localization of connection of internal rodsasponsible. It has been conclud-
ed that it is better to use the linear system witewmritical load value is greater
than the bifurcation load of the nonlinear systew mversely.



194

K. Sokot

References

(1]
(2]
(3]
(4]
(5]
(6]
[7]
(8]

(9]

(10]

Tomski L., Szmidla J., Free Vibrations and Stapitif Discrete Systems Subjected to the Spe-
cific Load., J. Theoret. Applied Mech. 2007, 45@}§3-892.

Tomski L., Przybylski J., Szmidla J., Uzny S., Drgai stateczn& uktadéw smuktych geome-
trycznie nieliniowych, section 9.3, WNT, Warszawi02, 261-288.

Tomski L., Podgorska-Brzttiewicz 1., Instability and free vibrations of aagmetrically non-
linear cantilever column with imperfections subgtto Euler’'s load, XXIV Symposium Vibra-
tions in Physical SystemBpzna - Bedlewo 2010.

Skalmierski B., Mechanika, PWN, Warszawa 1982, 283:2

Osinski Z., Teoria drgé, PWN, Warszawa 1978, 52-54.

Roodr J., Chilver A.H., Frame buckling an illustratiof the perturbation technique, Int. J. Non-
linear Mech. 1970, 8, 237-255.

Tomski L., Szmidla J., Local and global instabilégd vibration of overbraced Euler’'s column,
Journal of Theoretical and Applied Mechanics 200131), 137-154.

Tomski L., Uzny. S., Vibration and stability of gaetrically nonlinear column subjected to
generalized load with a force directed toward tbsitive pole, Int. Journal of Structural Stability
and Dynamics 2008, 8(1), 1-24.

Przybylski J., Drgania i stateczitodwuczionowych uktadéw ptowych wstpnie spezonych
przy obcizeniach niezachowawczych, €&rochowa 2002.

Nayfeh A.H., Perturbation methods, John, Wiley&Sbiesv York, London 1973.



