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Abstract. The 3D heat transfer problem (steady state) is considered. The equation describ-
ing the thermal processes contains the convective term (substantial derivative). The problem 
is solved by means of the boundary element method. The numerical model for constant 
boundary elements and constant internal cells is presented. In the final part of the paper the 
examples of computations are shown. The numerical results obtained by means of the BEM 
are compared with analytical solution and the very good compatibility can be observed. 

1. Formulation of the problem 

The following Fourier-Kirchhoff equation (steady state, 3D problem) is consid-
ered 

 ( ) ( ) ( )2: λ 0x T x c T x Q x∈Ω ∇ − ⋅ ∇ + =u  (1) 

where λ is the thermal conductivity and c is the volumetric specific heat, respec-
tively u = [u1, u2, u3] is the velocity, Q(x) is the source function, T denotes the tem-
perature and x = [x1, x2, x3] are the spatial co-ordinates.  

For u = [u1, 0, 0]  the equation (1) takes a form 
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The boundary conditions in the form 
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are also known, at the  same time ∂T/∂ n denotes the normal  derivative, n =  
= [cos α1, cos α2, cos α3] is the normal outward vector, Tb, qb are the known bound-
ary temperature and boundary heat flux, respectively.  

To solve the problem (2), (3) the boundary element method is proposed. 
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2. Boundary element method 

At first, the weighted residual criterion [1, 2] for equation (2) is formulated 
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where ξ is the observation point and T*( ξ, x) is the fundamental solution. 
The integral (4) is substituted by a sum of two integrals, while the first of them 

is transformed using the 2nd Green formula 
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The next integral in formula (4) is integrated by parts 
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Introducing (5), (6)into (4) one has 
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Fundamental solution T*( ξ, x) should fulfil the following equation 
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where δ(ξ, x) is the Dirac function. 
Taking into account the property (8) the equation (7) takes a form 
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where 
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For ξ∈ Γ the boundary integral equation is obtained 
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where B(ξ) ∈  (0, 1) is the coefficient connected with the location of point ξ on the 
boundary Γ. 

For the problem considered the fundamental solution is the following [3] 
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where r is the distance between the points ξ = (ξ1, ξ2, ξ3) and x = (x1, x2, x3). 
Using formula (12) the heat flux q*(ξ, x) resulting from fundamental solution 

can be calculated 
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where 

 ( ) ( ) ( )1 1 1 2 2 2 3 3 3ξ cosα ξ cosα ξ cosαd x x x= − + − + −  (14) 

3. Numerical realization 

To solve equation (11) the boundary is divided into N boundary elements and 
the interior is divided into L internals cells. Next, the integrals appearing in (11) 
are substituted by the sums of integrals. 
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So, for optional boundary point ξi∈ Γ one has 
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When the constant boundary elements and constant internal cells are used, this 
means 
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and 
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then equation (15) takes form 
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and 
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The system of equations (19) allows one to determine the “missing” boundary 
values Tj and qj. Next, the temperatures at the internal points ξi, 
i = N + 1, N + 2,...,N + L can be calculated using the formula 
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4. Discretization of boundary and interior of cuboid 

The cuboid of dimension l1 x l2 x l3 is considered (Fig. 1). The boundary is di-
vided into N constant boundary elements. It is assumed that hs = l1 / n1, n2 = l2 / hs, 
n3 = l3 / hs, and then N = 2n1n2 + 2n1n3 + 2n2n3. Below the fragment of Delphi code 
in which the boundary nodes coordinates are defined is shown. 

 
{przod}  
 for i:=1 to n1*n3 do y[i]:=0; 
 for k:=0 to n3-1 do 
  for i:=1 to n1 do 
   begin 
   x[i+n1*k]:=i*hs-hs/2.0; 

z[i+n1*k]:=k*hs+hs/2.0; 
   end; 
{prawa} 
 for i:=n1*n3+1 to n1*n3+n2*n3 do x[i]:=n1*hs; 
 for k:=0 to n3-1 do 
  for j:=1 to n2 do 
   begin 
   y[j+n2*k+n1*n3]:=j*hs-hs/2.0; 
   z[j+n2*k+n1*n3]:=k*hs+hs/2.0; 
   end; 
{tyl} 
 for i:=n1*n3+n2*n3+1 to n1*n3+2*n2*n3 do y[i]:=n2*hs; 
 for k:=0 to n3-1 do 
  for i:=1 to n1 do 
   begin 
   x[i+n1*k+n1*n3+n2*n3]:=n1*hs-(i*hs-hs/2.0); 
   z[i+n1*k+n1*n3+n2*n3]:=k*hs+hs/2.0; 
   end; 
{lewa} 
 for i:=2*n1*n3+n2*n3+1 to 2*n1*n3+2*n2*n3 do x[i]:=0.0; 
 for k:=0 to n3-1 do 
  for j:=1 to n2 do 
     begin 
     y[j+n2*k+2*n1*n3+n2*n3]:=n2*hs-(j*hs-hs/2.0); 
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     z[j+n2*k+2*n1*n3+n2*n3]:=k*hs+hs/2.0; 
     end; 
{dol} 

for i:=2*n1*n3+2*n2*n3+1 to 2*n1*n3+2*n2*n3+n1*n2 do 
z[i]:=0.0; 

 for j:=0 to n2-1 do 
  for i:=1 to n1 do 
   begin 
   x[i+n1*j+2*n1*n3+2*n2*n3]:=i*hs-hs/2.0; 
   y[i+n1*j+2*n1*n3+2*n2*n3]:=j*hs+hs/2.0; 
   end; 
{gora} 
 for i:=2*n1*n3+2*n2*n3+n1*n2+1 to N do z[i]:=n3*hs; 
 for j:=0 to n2-1 do 
   

for i:=1 to n1 do 
     begin 
     x[i+n1*j+2*n1*n3+2*n2*n3+n1*n2]:=i*hs-hs/2.0; 
     y[i+n1*j+2*n1*n3+2*n2*n3+n1*n2]:=j*hs+hs/2.0; 
     end; 
 
The coordinates of internal nodes can be determined as follows: 
 
{wewnetrzne} 
 for k:=0 to n3-1 do 
 for j:=0 to n2-1 do 
  for i:=1 to n1 do 
   begin 
   x[N+i+n1*j+n1*n2*k]:=i*hs-hs/2.0; 
   y[N+i+n1*j+n1*n2*k]:=j*hs+hs/2.0; 
   z[N+i+n1*j+n1*n2*k]:=k*hs+hs/2.0; 
   end; 
To calculate the integrals (20), (21) and (22) the Gaussian cubatures method is 

used [1, 2]. In this method the coordinates of vertexes of each boundary element 
(quadrilateral) should be known. If the vertexes of quadrilateral Γj one denotes by 
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4) then on the basis of boundary node 
coordinates x[j], y[j], z[j] they can be defined as follows: 

 
if j <= n1*n3 then begin  {przod} 
 x1:=x[j]-hs/2; x2:=x[j]+hs/2; x3:=x[j]+hs/2;

 x4:=x[j]-hs/2; 
 y1:=0.0; y2:=0.0;   y3:=0.0;   y4:=0.0; 
 z1:=z[j]-hs/2; z2:=z[j]-hs/2; z3:=z[j]+hs/2;

 z4:=z[j]+hs/2; 
 end 
else 
if j <= n1*n3+n2*n3 then begin  {prawa} 
 x1:=l1; x2:=l1;  x3:=l1;  x4:=l1; 
 y1:=y[j]-hs/2; y2:=y[j]+hs/2; y3:=y[j]+hs/2;

 y4:=y[j]-hs/2; 
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 z1:=z[j]-hs/2; z2:=z[j]-hs/2; z3:=z[j]+hs/2;
 z4:=z[j]+hs/2; 

 end 
else 
if j <= 2*n1*n3+n2*n3 then begin {tyl} 
 x1:=x[j]+hs/2; x2:=x[j]-hs/2; x3:=x[j]-hs/2;

 x4:=x[j]+hs/2; 
 y1:=l2; y2:=l2;  y3:=l2;  y4:=l2; 
 z1:=z[j]-hs/2; z2:=z[j]-hs/2; z3:=z[j]+hs/2;

 z4:=z[j]+hs/2; 
 end 
else 
if j <= 2*n1*n3+2*n2*n3 then begin  {lewa} 
 x1:=0.0; x2:=0.0;  x3:=0.0;  x4:=0.0; 
 y1:=y[j]+hs/2; y2:=y[j]+hs/2; y3:=y[j]-hs/2;

 y4:=y[j]-hs/2; 
 z1:=z[j]+hs/2; z2:=z[j]-hs/2; z3:=z[j]-hs/2;

 z4:=z[j]+hs/2; 
 end 
else 
if j <= 2*n1*n3+2*n2*n3+n1*n2 then begin {dol} 
 x1:=x[j]-hs/2; x2:=x[j]-hs/2; x3:=x[j]+hs/2;

 x4:=x[j]+hs/2; 
 y1:=y[j]-hs/2; y2:=y[j]+hs/2; y3:=y[j]+hs/2;

 y4:=y[j]-hs/2; 
 z1:=0.0; z2:=0.0;  z3:=0.0;  z4:=0.0; 
 end 
else 
if j <= N then begin {gora}\ 
 x1:=x[j]-hs/2; x2:=x[j]+hs/2; x3:=x[j]+hs/2;

 x4:=x[j]-hs/2; 
y1:=y[j]-hs/2; y2:=y[j]-hs/2; y3:=y[j]+hs/2;

 y4:=y[j]+hs/2; 
 z1:=l3; z2:=l3;  z3:=l3;  z4:=l3; 
 end; 
 

After determining the integrals Gi,j, Hi,j, Ui,j, Pi,l and taking into account the 
boundary conditions (3), the system of equations (19) can be solved by means of 
the Gaussian elimination method [2]. 

5. Example of computations 

The following input data are introduced: thermal conductivity λ = 10 W/(m�K), 
volumetric specific heat c = 106 J/(m3

�K), velocity u1 = 0.0001 m/s, source function 
Q = 0 W/m3. 

The cuboid of dimension 0.05 x 0.05 x 0.025 m3 is considered as shown in Fig-
ure 1. It’s assumed that n1 = n2 = 10, n3 = 5, so N = 400 boundary elements have 
been distinguished. It should be pointed out that in the case Q = 0 only the bounda-
ry should be discretized (c.f. equations (9) and (18)). 
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Fig 1. Domain considered 

The following boundary conditions are accepted: 

 

( )
( )
( )
( )
( )
( )

1 2 2 3 3

1 1 2 2 3 3

1 1 2 3 3

1 1 2 2 3 3

1 1 2 2 3

1 1 2 2 3 3

0, 0 , 0 : 50

, 0 , 0 : 100

0 , 0, 0 : 0

0 , , 0 : 0

0 , 0 , 0 : 0

0 , 0 , : 0

x x l x l T x

x l x l x l T x

x l x x l q x

x l x l x l q x

x l x l x q x

x l x l x l q x

= < < < < =
= < < < < =

< < = < < =
< < = < < =
< < < < = =
< < < < = =

 (25) 

In Figure 2 the temperature distribution in the plane x2 = l2 / 2 is shown. Taking 
into account the assumed boundary conditions, the results are the same for each 
plane x2 = s, where s∈ [0, l2]. 

 

 
Fig. 2. Temperature distribution (plane x2 = l2 / 2) 

The solution obtained can be compared with analytical solution for 1D problem 
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where C1, C2 are the integral constants determined from boundary conditions 
Ta(0) = 50°C and Ta(l1) = 100°C. 

 

 
Fig. 3. Comparison of numerical and analytical solutions 

The results are shown in Figure 3, where the solid line presents the analytical 
solution, while the symbols illustrate the numerical one. It is visible, that both so-
lutions are practically the same. 

Conclusions 

Application of the boundary element method for numerical solution of 3D Fou-
rier-Kirchhoff equation is presented. Both the theoretical and practical aspects of 
the problem solution are discussed. Among others, the way of discretization for 
cuboid using constant boundary elements is shown. Numerical results compared 
with analytical solution confirm the exactness and effectiveness of the algorithm 
proposed. 

The method presented can be applied for numerical modelling of heat transfer 
proceeding in domain of porous media, in particular the bioheat transfer equation 
basing on the theory of porous media [4] can be considered. 
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