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Abstract. The 3D heat transfer problem (steady state) isidened. The equation describ-

ing the thermal processes contains the convedive (substantial derivative). The problem
is solved by means of the boundary element metfibd. numerical model for constant

boundary elements and constant internal cellsasquted. In the final part of the paper the
examples of computations are shown. The numernésailts obtained by means of the BEM
are compared with analytical solution and the \wagd compatibility can be observed.

1. Formulation of the problem

The following Fourier-Kirchhoff equation (steadyats, 3D problem) is consid-
ered

X0 : B °T(x) dO T{) Q) O (1)

where is the thermal conductivity anglis the volumetric specific heat, respec-
tively u = [uy, W, ug] is the velocityQ(x) is the source functior, denotes the tem-
perature and = [Xy, X2, X3] are the spatial co-ordinates.

Foru =[uy 0, 0] the equation (1) takes a form

oT(x

x@ BT cy Q(x o0 2)

The boundary conditions in the form
XM 0 T(xF T,
aT (x 3)
xmT ,: q(xF- xa—E]): q,

are also known, at the same ti@&0 n denotes the normal derivative,=
= [cosay, COSa,, COSag] is the hormal outward vectdry, g, are the known bound-
ary temperature and boundary heat flux, respegtivel

To solve the problem (2), (3) the boundary elenmegtthod is proposed.
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2. Boundary element method

At first, the weighted residual criterion [1, 2]rfequation (2) is formulated
oT
I[XDZT(X)- cula—(x)+ Q(x)}TD(i,x)@ =0 (4)
o %

whereé is the observation point afid ( &, ) is the fundamental solution.
The integral (4) is substituted by a sum of twegnals, while the first of them
is transformed using the 2nd Green formula

(AT ()To(e )@= [1 T (&x)T (xjui+

L 0T(x) - aTo(E.X) ®)
jikT (&x) ST T(x)}dl’
The next integral in formula (4) is integrated layts
Icu (&, x)dQ = J'cuTD (€,%)T (x)cosndrl -
(6)

icul%xf’x)T (x)dQ

Introducing (5), (6)into (4) one has

I{KDZTD(Q,X)F cul%j’x)}ﬂx)@+

Q

!{XTD(&X)GBS]X)_kaTDa(j’X) ( ) —cuT (é X) ( )cosul}dlw )

[Q()T(¢,x)da =0

Q
Fundamental solutiom* ( &, X) should fulfil the following equation
T (¢,
x@ : B TY(E %) cul%g— 5(&,x) (8)

whered(&, x) is the Dirac function.
Taking into account the property (8) the equationtékes a form
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T(&)+ [T (&x)a(x)ar =

J.[qm(é,x) —cu T (&,X) coaxJT(x)dF + J'Q(X)TD(E;,X) dQ @)
where
q(x)=-r GBS]X) . q7(&x) = —xw (10)
For&UT the boundary integral equation is obtained
B(&)T (&) +[T (& x)a(x)dr =
) (11)

![qu(é,X) —cu T (&,X) cosal]T(x)dr+£Q(x)TD(§,x) dQ

whereB(&) LI (0, 1) is the coefficient connected with the lo@atof point on the
boundanyf.
For the problem considered the fundamental solusidhe following [3]

T(Ex) = 4E1M exp(—c—zl;j[r +(x, —gl)]j (12)

wherer is the distance between the poifts (1, &, &) andx = (Xq, Xo, X3).
Using formula (12) the heat flug*(&, x) resulting from fundamental solution
can be calculated

q'(&.x) = ! 3 exr{-c—zl;j[r +(% -él)]ji

4nr

df 1+ Sy |+ Sy cosu,
2\ 2\

d =(x —¢&,)cosu, +(x, —&,)cosu , +(x, =& jcosu , (14)

(13)

where

3. Numerical realization

To solve equation (11) the boundary is divided iNtboundary elements and
the interior is divided intd internals cells. Next, the integrals appearinglih)
are substituted by the sums of integrals.
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So, for optional boundary poitLI" one has

B(éi)T(éi)+gJTu(éi,x)q(x)dr1 _
> j L (15)
22 (e ) ~eu (& ) com J ()ar, + 3. Q¢ JT( e

i=lr, I=1 g,

When the constant boundary elements and constnhai cells are used, this
means

X . (16)
- la(x)=q(x') =q
and
xm : Q(xF Q(XF Q (17)
then equation (15) takes form
1 > O i
o7 +;qujT (&', x)dr; =
y ’ . (18)
ZTJ. [qu(e”;i,x)—culTD (&‘,x cosxl]drj +>Q j'TD(e”;i,x)dQI
=T =1 q
or
ZNjGi,jqj :i(Hi,j U, )T, +§L; PQ, i=12,.. N (19)
=1 =1 =1
where
G, = TD(<§‘,x)dFj (20)
and |
J'qD(e”;‘,x)dF] EN
Ho=4 (21)
r.qD(F,',x)drl—% =]
while

U, =cuy, [T7(€,x)cosudr, (22)
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and
R, = [T7(&x)doy (23)

Q

The system of equations (19) allows one to detezrtfie “missing” boundary
values T, and ¢. Next, the temperatures at the internal poirds
i=N+1,N+2,...N+L can be calculated using the formula

Ti =Z(Hi,j _Ui,j)Tj _ZGi,jqj +ZR,|Q| (24)
i =1 =1

i=1

4. Discretization of boundary and interior of cuboid

The cuboid of dimensioh x I, x |3 is considered (Fig. 1). The boundary is di-
vided intoN constant boundary elements. It is assumedhhaty / ng, n, =1,/ hs,
nz =13/ hs, and therN = 2n;n, + 2nyn; + 2n,n3. Below the fragment of Delphi code
in which the boundary nodes coordinates are definetiown.

{przod}
for i:=1to nl1*n3 do y[i]: =0;
for k:=0 to n3-1 do
for i:=1 to nl do
begi n
x[ i +n1*k] : =i *hs- hs/ 2. 0;
z[ i +n1*K] : =k*hs+hs/ 2. 0;
end;
{ prawa}
for i:=n1*n3+1 to nl*n3+n2*n3 do x[i]:=nl*hs;
for k:=0 to n3-1 do
for j:=1 to n2 do
begi n
y[]j +n2*k+n1*n3]: =j *hs- hs/ 2. 0;
z[j +n2*k+n1*n3] : =k*hs+hs/ 2. O;
end;

for i:=n1*n3+n2*n3+1 to nl*n3+2*n2*n3 do y[i]:=n2*hs;
for k:=0 to n3-1 do
for i:=1 to nl do
begi n
X[ i +n1*k+n1*n3+n2*n3] : =nl*hs- (i *hs- hs/ 2. 0) ;
z[i +n1*k+n1*n3+n2*n3]: =k*hs+hs/ 2. 0;
end;
{I ewa}
for i:=2*n1*n3+n2*n3+1 to 2*nl1*n3+2*n2*n3 do x[i]: =0.0;
for k:=0 to n3-1 do
for j:=1 to n2 do
begin
y[j +n2*k+2*n1*n3+n2*n3] : =n2*hs- (j *hs- hs/ 2. 0) ;
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z[j +n2*k+2*n1*n3+n2*n3] : =k*hs+hs/ 2. 0;

end;
{dol }
for i:=2*nl*n3+2*n2*n3+1 to 2*nl*n3+2*n2*n3+nl*n2 do
z[i]:=0.0;
for j:=0 to n2-1 do
for i:=1to nl do
begi n
X[i+n1*j +2*n1*n3+2*n2*n3]: =i *hs- hs/ 2. 0;
y[i+nl*j +2*n1*n3+2*n2*n3] : =j *hs+hs/ 2. 0;
end;
{gor a}

for i:=2*n1*n3+2*n2*n3+nl*n2+1 to N do z[i]:=n3*hs;
for j:=0 to n2-1 do

for i:=1 to nl do
begin
X[ 1 +nl*j +2*n1*n3+2*n2*n3+nl*n2] : =i *hs- hs/ 2. 0;
y[i+nl*j +2*n1*n3+2*n2*n3+nl*n2]: =j *hs+hs/ 2. 0;
end;

The coordinates of internal nodes can be determasddllows:

{wewnet r zne}

for k:=0 to n3-1 do

for j:=0 to n2-1 do

for i:=1 to nl do

begi n
X[ N+i +nl*j +n1*n2*K] : =i *hs- hs/ 2. 0;
y[ N#i +n1*j +n1*n2*k] : =j *hs+hs/ 2. 0O;
z[ N+i +nl1*j +n1*n2*Kk] : =k*hs+hs/ 2. 0;
end;

To calculate the integrals (20), (21) and (22) @sissian cubatures method is
used [1, 2]. In this method the coordinates ofasas of each boundary element
(quadrilateral) should be known. If the vertexesjoadrilateral’; one denotes by
(X0, Y1, 21), (X2, Yo, Z2), (X3, Y3, Z3), (X4, Vs, Z2) then on the basis of boundary node
coordinatex[j],¥[j1,z[]j] they can be defined as follows:

if ] <= nl1*n3 then begin {przod}
x1:=x[]j]-hs/2; x2:=x[]] +hs/ 2; x3:=x[] ] +hs/ 2;
x4:=x[j]-hs/2;
y1l:=0.0; y2: =0. 0; y3: =0. 0; y4: =0. 0;
z1:=z[j]-hs/2; z2:=z[]j]-hs/2; z3:=z[]] +hs/ 2;
z4:=z[j] +hs/ 2;
end

el se

if j <= nl1*n3+n2*n3 then begin { pr awa}
x1:=11; x2:=11; x3: =l 1; x4: =1 1;

yl:=y[j]-hs/2; y2:=y[]j] +hs/ 2; y3: =y[j] +hs/ 2;
y4:=y[j]-hs/2;
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z1:=z[j]-hs/2; z2:=z[j]-hs/ 2; z3:=z[]j] +hs/ 2;
z4:=z[]j] +hs/ 2;
end

el se

if j <= 2*n1*n3+n2*n3 then begin {tyl}
x1:=x[j] +hs/ 2; x2:=x[j]-hs/2; x3:=x[j]-hs/2;
x4:=x[]] +hs/ 2;
yl: =l 2; y2: =l 2; y3: =1 2; ya: =l 2;
z1:=z[j]-hs/ 2, z2:=z[j]-hs/2; z3:=z[j] +hs/ 2,
z4:=z[j] +hs/ 2;
end

el se

if j <= 2*n1*n3+2*n2*n3 then begin {I ewa}
x1:=0.0; x2:=0.0; x3: =0. 0; x4:=0. 0;
yl:=y[j]+hs/2; y2: =y[j] +hs/ 2; y3:=y[j]-hs/2;
y4:=y[j]-hs/2;
z1:=z[ ] +hs/ 2; z2:=z[j]-hs/ 2; z3:=z[j]-hs/2;
z4:=z[j] +hs/ 2;
end

el se

if j <= 2*n1*n3+2*n2*n3+nl*n2 then begin {dol }
x1:=x[j]-hs/2; x2:=x[]j]-hs/2; x3:=x[]j] +hs/ 2;
x4:=x[]] +hs/ 2;
y1l:=y[j]-hs/2; y2:=y[]j]+hs/ 2; y3:=y[j] +ths/ 2;
ya:=y[j]-hs/2;
z1:=0.0; z2:=0.0; z3: =0. 0; z4:=0. 0;
end

el se

if j <= Nthen begin {gora}\
x1:=x[]j]-hs/2; x2:=x[] ] +ths/ 2; x3:=x[]j] +ths/ 2;
x4:=x[]]-hs/ 2,
yl:=y[]j]-hs/2; y2:=y[j]-hs/2; y3:=y[]j] +hs/ 2;
y4: =y[j] +hs/ 2;
z1: =1 3; z2: =1 3; z3: =1 3; z4: =1 3;
end;

After determining the integral&;;, Hi;, U;, P, and taking into account the
boundary conditions (3), the system of equatior®y ¢an be solved by means of
the Gaussian elimination method [2].

5. Example of computations

The following input data are introduced: thermahauoctivity A = 10 W/(mK),
volumetric specific heat = 1¢ J/(nt-K), velocity u; = 0.0001 m/s, source function
Q=0 W/n.

The cuboid of dimension 0.05 x 0.05 x 0.025isconsidered as shown in Fig-
ure 1. It's assumed thag =n, = 10, n;3 =5, soN = 400 boundary elements have
been distinguished. It should be pointed out thahé cas€) = 0 only the bounda-
ry should be discretized (c.f. equations (9) ar8))(1
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Fig 1. Domain considered

The following boundary conditions are accepted:

x =0, 0<x,<l,, 0<x,<l,: T(x)=50

x =, 0<x,<l, 0<xy<l,: T(x)=10C

0<x<l, x,=0, 0<x,<l,: q(x) =0 (25)
0<x <l, X,=l,, 0<x,<l,: q(x) =0

O<x <l, 0<x,<l,, x,=0: q(x) =0

O<x <l, 0<x,<l,, x,=l,: q(x) =0

In Figure 2 the temperature distribution in thenglg =1,/ 2 is shown. Taking
into account the assumed boundary conditions, eékalts are the same for each
planex, = s, wheresLI[O, |].

58 ——

é L

86 ——

L
|
I S B

Fig. 2. Temperature distribution (plare=1,/ 2)
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The solution obtained can be compared with anallytiolution for 1D problem

T.(x)=C, +czexp(% xlj (26)
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where C;, C, are the integral constants determined from boyndanditions
Ta(0) = 50°C andr,(I;) = 100°C.

100
T[°C]
SO / ///
70 /&
. /
5%.00 0.01 0.02 Q.05 Q.04 0.05

_ . . o X1 [m]
Fig. 3. Comparison of numerical and analytical Sohg

The results are shown in Figure 3, where the doi presents the analytical
solution, while the symbols illustrate the numedrigae. It is visible, that both so-
lutions are practically the same.

Conclusions

Application of the boundary element method for nuio# solution of 3D Fou-
rier-Kirchhoff equation is presented. Both the ttedical and practical aspects of
the problem solution are discussed. Among othéies,way of discretization for
cuboid using constant boundary elements is showmeNical results compared
with analytical solution confirm the exactness afi@ctiveness of the algorithm
proposed.

The method presented can be applied for numeriogleiting of heat transfer
proceeding in domain of porous media, in partictife bioheat transfer equation
basing on the theory of porous media [4] can besiclemed.
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