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Abstract. Parabolic equation with source term dependenberiitst derivative of unknown
function is considered. To solve this equation nisans of the boundary element method
the fundamental solution should be known. In thpepahe fundamental solution for 3D
problem is derived.

Introduction
The following parabolic equation is considered
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where T is the temperaturea=A/c is the thermal diffusivity { is the thermal
conductivity andc is the volumetric specific heat, respectively)js the constant
velocity, € is the porosityt denotes time,x={x;,X,,X; Jand

02T (x,t) = i azT—(’;t) (2
e=1 axe

The equation (1) is supplemented by boundary cimmdit

xdlr; : T(xt) =T,
(3
xOr, © g(xt) = -4 CALGDRS Ob
on
and initial one
t=0: T(x,0=T, (4)

where T, and g, are the known boundary temperature and boundaay fhex,
respectively,T, is the initial temperatur@dT/dn is the normal derivative
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coSa, (5)

wherecosa, are the directional cosines of the normal ordwactorn.

The aim of investigations is to solve the problemfulated by means of the
boundary element method. It is possible under fseirmption that the fundamental
solution is known. In this paper the fundamentdiigon is derived for 3D prob-
lem.

Fundamental solution

The equation (1) can be written in the form

1 0T (xt) = D2 T(x 1) - EU 0T (xt) ©6)
a ot a 0x
At first, the following approximation with respetct time is proposed
fy_ f-1 f
1Tt )-T(xt ) _ 2T(xtl) - £Y 0T (xt) 7)
a At a 0%

this means

euaT(xth) 1
a 0% al

PT(xt) - = T(xtf) - Txt™™ =0 (8
aAt t
The weighted residual criterion for equation (83 tize following form [1, 2]

2 fy - 1 Tty -
f{D T(x,t") aAtT(x,t )

Q
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a 0% aiAt
whereT"(£,x) is the fundamental solution.
Using the second Green formula [1, 2] one has
f
[ O2T°(&,x) T(xt")dQ + | {T*(E,x) oT(xt]) _
Q r an
(10)

T(xt" W}dr - ﬁ [Toot') T (£,%)da -
Q
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£UOT(xt') 1 1 R )
L2 on T(‘(’X)dQJraAtgf}T(X,t )T'(Ex)da =0

or

2 1 f _1l f
ﬂm T'(¢,x) a7 (E,x)} Txt')do -2 iT (& X)q(xt")dr +

[a(&X)T(xth)dr + j‘%“% T(xth)dQ - (11)
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EU o f 1 f-1y
[[ S T(&X)T(xt") cosa, dr + VY gjo(x,t ) T7(&,x)dQ

whereq(x,t") = =21aT(xt")/an and q (&,x) = -4 0T (&,x)/an.
Finally

2 (en) - L T EUT (0t |1y
[ |02T7(&,x) aAtT(E,x)+ 2 o T(xt")dQ

Q
LT Eaxtydr + 21 g (Ex) Tt )dr - (12)
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It is visible that in the case considered the funeiatal solution should fulfill
the following equation

- 1 cudT (xt") _ _
PT(EX) - T + = “ox s(Ex) (13

where d(¢, x) is the Dirac function.
Because the fundamental solution for equation

PT(Ex) - = T(EX) = -a(ex) (14)

has the form [2]
r

T'(6,x) = Klr e Va4t (15)
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and the fundamental solution for equation

£u 0T (xt")

02 T7(&,x) + ox

= -5(¢,x)

has the form [3]

cu
1 e_ 2a [I’ + (Xl_gl)]

TEx) = A Ar

so for equation (13) the following fundamental s$ion is proposed

1 £u
-C, —I - C, [I’ +(X1_51)]

T*(E’X) = 4 lﬂl’ e aAt 2a
T

whereC; andC,; are the unknown constants.
The adequate derivatives are calculated
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and

- 4

GZT*(g,x) ~ 1 e-clx/ﬁr —CZ%:[H(xrél)] 3()(1—51)2 +
ax’ 4 Ar r
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Introducing (18), (19), (22), (23) and (24) int@)bne obtains
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—cudt + 4 (eunt)? + 4ant
2 JaAt (25)

C’.L =
C2 = 1
So the searched fundamental solution has the form

T'(&,%) = e a, 2 a

= 26
A Ar (26)
The heat flux resulting from the fundamental salntis defined
. AT (&, X
q@Ex =-1 20X (27)

on

and this function can be calculated in analyticayw

Eu 2 1 £u 2
|t T S e -
q*({,X) - A e (23] aAt 2a 1 ¢t &u + 1 X ('tl +
armr 2a aAt r

2
%~6 , U cosa, + Eul L 1 %= %6 cosa, (28)
r2 2a 2a) aAt r r?

2
+ (5uj + 1 x-4 + X3 = &3 cosa,
a

2a At r r?

Summing up, the fundamental solution (26) allows tm apply the boundary
element method for numerical solution of equatibn (
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