
Scientific Research of the Institute of Mathematics and Computer Science 

ON A CERTAIN METHOD OF CALCULATING YOUNG 

MEASURES IN SOME SIMPLE CASES 

Piotr Puchała 

Institute of Mathematics, Czestochowa University of Technology, Poland 

p.st.puchala@gmail.com 

Abstract. We will explicitly calculate Young measure associated to a sequence that is uni-

formly bounded but not strongly convergent in . 

1. Motivation 

One of the main problems concerned with direct methods of the calculus of var-

iations is of the oscillation nature. There is a minimizing sequence to our problem 

and this sequence is uniformly bounded but is not strongly convergent. As it is 

bounded it has a subsequence converging weakly∗  to a certain limit. As the indic-

es grow the element of the subsequence oscillate more and more ,,wildly” around 

this weak* limit. However, passing to the limit erases much information about the 

oscillatory nature of the minimizing sequence because, roughly speaking, this 

weak* limit is a ,,mean value” of these oscillations. The idea of overcoming this 

disadvantage is to assign as a limit not a ,,usual” function but a probability meas-

ure - valued function called Young measure or parametrized measure. There are 

some difficulties in giving nontrivial examples of Young measures. Explicit calcu-

lations are based mainly on a generalized version of Riemann-Lebesgue lemma. 

The method presented in this paper, although needs some improvements, does not 

use this lemma, but only the change of variable theorem giving the same results as 

in examples in literature. 

2. Definitions and notation 

Let  be a nonempty, open bounded subset of . We denote by  the 

space of essentially bounded functions on  with values in . We equip this space 

with the norm : 

   

where the inequality holds almost everywhere (a.e.) with respect to the Lebesgue 

measure. 
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Let  be a sequence of functions belonging to  such that: 

(a)  

(b)  

(c)  weakly* in , that is  we have 

 

Let  be a Carathéodory function (i.e. the function measurable 

with respect to the first variable and continuous with respect to the second varia-

ble). For any function  we set  Sequence 

 has a convergent subsequence (denoted by the same symbol for simplici-

ty) convergent weakly* in  to certain , provided the above assumptions 

are fulfilled by sequence  and function  . 

In general , but  is a function with domain  and the range in the 

space of probability measures on . Thus, 

 

Adopting the usual notation we will denote  by  and write . So we 

have  Measure  is concentrated on set  

Now, if  weakly* in , then  weakly* where 

we have 

 

According to the Riesz representation theorem we can consider  as a continuous 

linear functional on a space of Carathéodory integrands   

 

We will call the parametrized probability measure  a Young meas-

ure, while functional  will be called Young functional. 

We can associate a Young measure to any measurable function . This 

is the unique measure concentrated on the graph of . It is an image of the Lebes-

gue measure on  under the mapping . 
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3. Calculation of a Young measure 

We consider the following integral: 

 

Assume that  is nonempty, open and bounded subset of , - nonempty com- 

pact subset of ,  - a Carathéodory function and let  

be a.e. differentiable function (with respect to the Lebesgue measure on . Fur-

ther assume that function  can be written as  Let us consider 

the inner integral on the right hand in the equation below: 

 

Substituting  we obtain 

 

Applying the change of variable theorem once more we see that  is a measure 

which is absolutely continuous with respect to the Lebesgue measure on  and has 

density of the form   . 

4. Examples 

(1) Let  and consider the sequence of functions 

 

where  and  Obviously, the range of each  is the 

compact set . Observe that for  we have  so  
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sequence  is not Cauchy in  This means that it does not converge 

strongly in . On the other hand it is uniformly bounded in  

so it has a weakly* convergent in this space. 

Let us fix  and apply our procedure to sequence  Using the change 

of variable theorem to the inner integral we get 

 

 

We consider the k-th integral in  Substitution  yields the 

formula 

 

There are  integrals in  so  

Analogously,  Finally, we obtain 

 

Thus, we conclude that the Young measure associated to sequence  has the form 

 

i.e. it is a homogeneous Young measure (that is independent of ) and is ab-

solutely continuous with respect to the Lebesgue measure on  with the density 

equal to  

(2) Let  and consider function  (see [3] p.115): 
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We see that  Let be a sequence of functions with the first 

element : one ”tooth” (i.e. graph of ) in   such shaped ”teeth” in 

 Applying procedure described above to the defined functions we see that 

Young measure  associated to the function  is absolutely continuous with 

respect to the Lebesgue measure on  with the density  equal to 

 

Remark I 

Let us observe that in the above examples we fixed  arbitrarily, so the sequence 

of Young measures associated to our sequence of functions is constant and as such 

it is trivially convergent to the calculated Young measure. It allows us to ask whether 

in some special cases the sequences of Young measures associated to the sequences 

of measurable functions are the constant ones. It is also of interest to characterize 

the class of all those sequences of measurable functions whose sequences of asso-

ciated Young measures are the constant ones or such that their limits can be calcu-

lated easily. 

Remark II 

The Young measures appears in a natural way in engineering problems. In the 

calculus of variations or in the static problems in mechanics the basic role is played 

by the integral functionals of the type 
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acting on an appropriate function space. One of the most effective methods of 

seeking minima of such functionals is the direct method. It allows to investigate 

the minimum of the functional without analyzing the Euler - Lagrange equations. 

However, even the convexity of the integrand  (or even some generalizations of 

the notion of convexity) does not guarantee the existence of the classical minimiz- 

ers for J . In this case minimizing sequences oscillate violently around their weak 

limits. The procedure of convexyfying the integrand, although widely used, erases 

much information about the oscillatory nature of the minimizing sequences. The 

Young measures can be effectively used to analyze the oscillation phenomena. 

Let us mention that in engineering we often meet nonconvex integrands; in 

smart materials the density of the internal energy is not a convex function (in fact, 

it is not even quasiconvex). The lack of convexity appears also in crystal twinning: 

in crystals the density of the internal energy is a many - well potential, obviously 

a nonconvex function. 
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E R R A T U M  

Errata to „On the queue-length distribution in the GI 

X
/G/1 system 

 with server vacations and exhaustive service” 

[Scientific Research of the Institute of Mathematics and Computer Science 

2(7), 2008, p. 23-30] 

Wojciech M. Kempa 

Silesian University of Technology, Gliwice, Poland 

The analysis is invalid for general-type distributions of interarrival times. 

It should be restricted to models with Poisson arrivals (thus to systems 

of M  

X
/G/1 type) due to significance of memoryless property. All other 

distributions (of service times, bath sizes and vacations) can be of general 

types. 


