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Abstract. In the paper the possibilities of the Non-UnifoRational B-Splines (NURBS)
application for description of domains with compleskape are shown. The B-spline
functions, B-spline curves and NURBS curves arerahkto account. In the final part of the
paper the examples of shape generation using NURB&s are shown.

Introduction

The curves and surfaces in geometric modellingbemamepresented by implicit
equations and parametric functions. The impliciuaggpn of a curve lying in
the planexy has the forni(x, y) = 0. For example, the equatibx, y) =x+y*-1 =0
describes the circle of unit radius centered abtigen. In parametric form, each of
the coordinates of a curve point is representedratgly as an explicit function of an
independent parameteC: (t) = (X (1), y ()), a <t < b, where the intervalg] b] is
arbitrary one. For example, the circle of unit vsdtentered at the origin can be
written in the form:C (t) = (cos(t), sin(t)), 0<t < 2t It should be pointed out that
implicit representation is unique up to a constatiile the parametric representation
of a curve is not unique.

The parametric form is more natural for designimgl aepresenting shape in
numerical implementation. Additionally, the cur@dt) = (X (t), y (t)) can be treated
as a path traced out by a particle as a functidimaf,t is the time variable and,[b]
is the time interval. The first and the second \@gives of C (t) correspond
to the velocity and acceleration of the particle.

Among the parametric forms of curves, the most {sopare the Bezier, rational
Bezier, B-spline and NURBS curves. Non-Uniform Batil B-Splines (NURBS) are
widely used for the representation, design and datehange of geometric
information processed by computers.

1. B-splinefunctions

Let T = {to, ty, t2, ..., tn} be a nondecreasing sequence of real numbers, this
meanstp< t; < ...t <tyg...< b
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Thei-th B-spline basic function ai-degree is defined as

1, t <t<t
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o0 {O , otherwise @)
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this means (Fig. 2)
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Fig. 2. FunctionN; ,

In similar way the B-spline basis function is consted forn = 3, 4 etc. It

should be pointed out that from the practical pahwview the most important is
the B-spline basis function for = 3.

We assume that= 2 andT = {0, 0, 0, 1, 1, 1}, this meartg=t;=t,= 0,t3=t,=

=ts= 1. It is easy to check that in this case onlthminterval [0, 1] the nonzero B-
spline basis functions exist (c.f. Equation (6jufée 3)

Noo(t) = @-tF, Ny,(t)=2t@-t), N,,(t)=t? (7)

No2 Ny N2

Fig. 3. FunctionN; ,
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Forn=3 andT ={0, 0, 0, 0, 1, 1, 1, 1} the nonzero B-spline isasinctions
have the following form (Fig. 4).

Nos(t) = (1_t)3 , Nys(t) = 3t(1_t)2

8
Noa() =32 (A-1), Nya®)=t® ®

0 1

Fig. 4. FunctionN; 3

2. B-spline curves

A n-th degree B-spline curve is defined as follows
Ct=> N, ,0)P,, ast<b (9)
i=0

where P; are the control pointsN;, () are the B-spline basis functions (c.f.
Equation (1)) defined for the following set of nsde

T ={a. @, thg, thazees by (neny W0 1o 0 (10)

at the same time the valuesand b appearn+1 times. The number of control
points equals+1 and corresponds to the number of nonzero baisisions.

It should be pointed out that the degreef curve, number of control points
r+1 and number of nodest+1 are related by formula:= m- (n+1).

For example, ih=3,T={0, 0, 0, 0, 1, 1, 1, 1} = 7) then the number of
control points equalst1 = 4 and the B-spline curve has the followingrfor

ci= NosPo + Nig P+ Ny P, + N3 Py (11)

where the functionll, 3, i =0, 1, 2, 3 are described by formula (8).
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In Figure 5 the B-spline curves for the controlneia)P, = (0, 0),P; = (1, 0),
P,=(0.75, 0.5),P;= (0, 1) and bP,= (0, 0), P,=(0.75, 0.5)P,= (1, 0),P;=(0, 1)
are shown.
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Fig. 5. B-spline curves for 4 control points ahe {0, 0, 0,0, 1, 1, 1, 1}

3. NURBS curves
A n-th degree NURBS curve is defined as follows
r
2N Ow; P,

C(t)="2 . asts<b (12)
Ny (1) W,

M-‘

k

1l
o

whereP; are the control points forming a control polygen,are the weights and
N, n(t) are the B-spline basis functions defined forgéeof nodes (10).

For example, fon=3,T={0,0,0, 0, 1, 1, 1, 1}r = 7) the number of control
points equals +1 = 4 and the NURBS curve has the following form

Nos WPy + Nz WP + Ny WP, + Ngg wiPy

C(t)= (13)
NosWo + NygWy + Noaw, + Ngows
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Fig. 6. NURBS curves for 4 control points ahé {0, 0, 0,0, 1, 1, 1, 1}
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In Figure 6 the NURBS curves for the control poimarked in Figure 5 and the
weights awp=1,w; = 3, W, = 1,wz=1 and bwe=1,w; = 3,Ww, = 4, wz= 1, are
shown.

4. Application of NURBS curvesfor description of complex
domain geometry

The following set of control points has been takeio account:P, = (0.005,
0.005),P,= (0.005, 0)P3;= (0.01, 0)P,= (0.04, 0)Ps= (0.04, 0)Ps= (0.04, 0.025),
P; = (0.015, 0.025)Ps = (0.0025, 0.025)Py = (0, 0.02),P;0 = (0.005, 0.015).
The segments of boundary of the domain presentédyime 7 are described by the
following NURBS curveswy =w; = 1,w,= 2)

A-t)%2w,P, + 2t(L—t)w,P, +t?w,P.
- 00 11 22

C,: C,(t
' 1) A-t)2w, + 2t(L-t)w, +t2w,
C,: C,(t)=@-t)P, +tP,
C.. o Cu)= @A-1)° WPy + 2t L - t)W,P, +t>w,P;
: ® A-t)2w, + 2t(L-t)w, +t2w,
C,: C,(t)=@-t)P, +tP, , C.: C.(t) = @-t)P, +tP,
C.: C.t)= @L-1)°W,P, + 2L - t)w, Py +t>w,P,
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Fig. 7. Boundary of the domain described by NURBS esirv
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Summing up, proper choice of control points, thewights and degrees
of NURBS curves allows to describe practically optil boundary of 2D domain.
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