Please cite this article as:
Jarostaw Kesy, Zbigniew Domanski, Jolanta Btaszczuk, Genetic algorithm approach to force chains in 2D granular
packings, Scientific Research of the Institute of Mathematics and Computer Science, 2007, Volume 6, Issue 1, pages
99-102.
The website: http://www.amcm.pcz.pl/

Scientific Researctf the Instituteof Mathematicand Computer Science

GENETIC ALGORITHM APPROACH TO FORCE CHAINS
IN 2D GRANULAR PACKINGS

Jarostaw Kesy, Zbigniew Domaski', Jolanta Btaszczuk

Institute of Mathematics and Computer Sciences, Technical University of Czestochowa, Poland
email: ! zdomanski @imi.pcz.pl, 2jolab@imi.pcz.pl

Abstract. We study the geometry of patterns formed by foineBD models of granular
stacking using a genetic algorithm. As a fitnesscfion we employ an entropy measure
based on probability density functions of forceinkerm lengths computed for different
underlying lattice geometries.

Introduction

Granular materials represent an important clagsatérials used in technologi-
cal processes. In general they are not reguladisoli liquids [1, 2]. They resem-
bles solids in the static state when the contacief® between grains are repulsive
and balance on every particle. In ordinary solidd aonfined fluids, uniformly
applied loads are distributed homogeneously througkthe material. This is not
the case for granular materials. Inside a granukaterial forces are distributed in
a very inhomogeneous way with small fraction ofimgasupporting large frac-
tion of the internal forces [3]. These loaded gsaiarm a structure, called the
force network [4-6], experimentally observed in kiags of photoelastic particles
[7].

The geometrical properties of networks have atdchuch attention due to
progress in the fields of computer science, mathiealabiology and statistical
physics. One of an important question is how maaiyspof points separated by
a given numbeig of steps can be found in a bounded region of alaedattice.

Such numbeq is referred to as the so-called Manhattan distaRoe a square
lattice the Manhattan distance is defined as the ciuthe horizontal and the verti-
cal distances. Similarly, for other geometries w&e define the Manhattan distance
as the sum of the distances along directions ghtallthe edges of an appropriate
elementary cell. This contribution focuses on gemyndut the knowledge
of the number of Manhattan distances in a partidaltice enables us to analyze
the distribution of contact forces in granular pagk
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1. Formulation of the problem

Our motivation for studying the relation betweemcés and geometry comes
from the fact that in a generic case of a regulankmg of frictionless spherical
grains the underlying physics is rather transpaaedtthat regular packing mapped
on an appropriate regular lattice can be resolwedytically.

Consider random geometrical points, i.e. pointshwitcorrelated positions,
occupied vertices of a regular lattice. We addthssfollowing question: what is
the distribution of distances between a given exfee point and other randomly
chosen point, where points are distributed unifgrmssuming that these points
are the end points of a zigzag distance we canrotiia end-to-end distribution
of force-chain arms within a given lattice wher#aes particular form of the zigzag
line follows the Principle of Maximum Entropy [8].9

VY
ST e s AT S i

L
b,

e

5
L%

P i,

o

()
20
4

[ n'ih*"ﬂ*'ﬁﬁ*’ o ST {
I SO R R AT

AT, Y
RS R RS

RN

T

Fig. 1. Force chains in 2D regular tessellatiopsriangular, b) square and c¢) hexagonal
lattices

For the triangular lattice presented in Figure & ttumber of Manhattan dis-
tancesq is given by Equation (1):

At(Q)=gQ(N—q)(N—q+1) for q=12...,N-1 (1)

where N is the linear extension of a bounded region measur number of unit
steps in one of three equivalent directions ofuhi cell. Analogous, appropriate
expressions for hexagonal,(q) (Eq. (2)), squaré\s(q) (Eq. (3)) lattices are:
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We have derived the probability density functions the Manhattan distance
within following tessellations of the plane: squéFég. 2), triangular and hexago-
nal. We have also calculated the moments of thissglditions and found that for
the square lattice they diverge whereas for otagicks the moments asymptoti-
cally vanish.
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Fig. 2. Number of Manhattan distances for squétieéawithN = 9 andN = 10

The probability density functions obtained for 2&3gellations give the proba-
bility weight of classq containing pairs of points with given distangeThus,

they may contain valuable information related te gotential energy of granular
systems. In physics, the potential energy of a bisdywery often, the sum of
the potential energies of its pairs of parts otipl@s. From a computational point
of view, this means that we have to do a six-dirfmTad integral. But if the distri-

bution of distance of the system is known then anlyne-dimensional integral is
necessary and so this increases the numericakjeci

2. Computational details

In this paper we consider 2D packing of spheresyatting in pairs via an arbi-
trary central force. We assume that the system isquilibrium and that all the
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equilibrium particle positions are given by onetloé three regular planar tessella-
tions (see Fig. 1). By associating a site of egitese centre and a bond to each
pair of spheres in contact we form a contact faoregvork. When the number of
contacts is greater than the rank of the rigiditgtnix the network is said to be
hyperstatic. For hyperstatic networks, the probleinfinding the stresses from
the equations for force equilibrium at each netwaité& alone is underdetermined.
We assume that an information about particularniéjma of inter-grain inter-
actions over the network should fulfil the maximemtropy principles [8, 9]. Any
possible force chain is considered as an ensenflaler® with given length meas-
ured is the sense of the Manhattan distance. Seaweompute the corresponding
entropy using the probability weights;(q), A¢(q) and Ap(q). In order to com-

pute the force chains formed due to a verticaldapplied at the centre of the top
layer (Fig. 1).

We employ a genetic algorithm using the entropw disness function and the
search strategy is based on selection and mutatityn Our mutation operation is
constructed as follows. Any grain layer is crosbgdat least two force network
arms. For randomly chosen layer we pick two graimeng grains crossed by arms
of given force chain. These grains we considerragns of two subnetworks. By
interchanging their positions we change the giwvaned chain. As a consequence
of such mutation, the total length of arms doesamainge during evolution, which
corresponds to the constant force applied to tiséery whereas the repartition of
lengths of arms inside a new force chain is diffiéfeom generation to generation.

In conclusion, the entropy maximum principle canused as an selection tool
yielding an valuable information about static pndj@s of granular packing.
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