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Abstract. A free vibration analysis of Kirchhoff plates is presented in the paper. Using 
proposed approach, there is no need to introduce Kirchhoff forces at the plate corner and 
equivalent shear forces at a plate boundary. Two unknown and independent variables are 
considered at the boundary element node. The Bettie theorem is used to derive the boundary 
integral equation. The collocation version of boundary element method with “constant” type 
of elements is presented. The source points are located slightly outside a plate boundary, 
hence the quasi-diagonal  integrals of fundamental functions are non-singular. 

Introduction 

The Boundary Element Method (BEM) was created as a completely independ-
ent numerical tool to solve engineering problems [1, 2]. The BEM do not require 
the all domain discretization but only the boundary of a considered structure. This 
method reduces the computational dimension by one. 

The Boundary Element Method is often used in the theory of both thin and 
thick plates and is particulary suitable to analyse the plates of arbitrary shapes and 
rested on internal supports. Analysis of plate bending using BEM was introduced 
by Bezine [3] and Stern [4] for Kirchhoff plate theory and by Vander Weeën [5] 
for the thick plate theory. Okupniak and Sygulski [6] used fundamental solution  
of Reissner plate proposed by Ganowicz [7]. Some authors present a modified 
approach of  thin plate analysis. El-Zafrany, Debbih and Fadhil [8] assumed non-
zero distribution of stress over the plate thickness. Hartley [9] proposed the BEM 
to solve similar problems. Guminiak [10, 11], Guminiak, and Sygulski [12]  
assumed a physical boundary condition also discussed in this paper.  

Modelling of plate bending problem in free vibration analysis requires modifi-
cation of governing boundary integral equation. Bèzine [3] proposed approach in 
which, the forces at the internal collocation points are treated as unknown  
variables. Katsikadelis et al. [13], Providakis and Toungelidis [14] and Shi [15] 
applied technique of Bezine to solve dynamic problems of thin plate. The second 
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approach was proposed by Rashed [16] in application of a coupled BEM-flexi-
bility force method in bending analysis of plates with internal supports.   

Present paper includes a modified formulation for bending analysis of plates, in 
which three geometric and three static variables at the plate boundary are consid-
ered. In this formulation there is no need to introduce the equivalent shear forces  
at the boundary and concentrated forces at the plate corners. Similar to Hartley [9], 
the source points were located slightly outside a plate boundary, hence all of quasi-
diagonal integrals are non-singular.  

1. Integral formulation of thin plate bending in modified approach 

On the plate boundary there are considered amplitudes of variables: the shear 
force nT , bending moment nM , torsional moment nsM  and  deflection w , angle 

of rotation in normal direction nϕ  and angle of rotation in tangent direction sϕ . 
Only two of them are independent. The boundary integral equation are derived 
using Bettie theorem. Two plates are considered: infinite plate, subjected unit con-
centrated loading and the real one (Fig. 1). 
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Fig. 1. Variables present in the boundary integral equation 

x = x (x1, x2) - the source point 
y = y (x1, x2) - the field point  

The second group of the forces (real plate) 

The first group of the forces (infinite plate) 
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A free vibration problem of thin plate is considered. In each internal collocation 
point associated with single lumped mass there are introduced displacement vector 

iw , acceleration vector iw��  and inertial force iB  (Fig. 1) 

 tWw ii  sinω=  (1) 

hence 

 tWw ii  sin2 ωω−=��  (2) 

Then, the inertial force amplitude is described 

 iii WmB 2ω=  (3) 

where ω  is the plate natural frequency. To derive integral equation the static fun-
damental solution is used. As a result the boundary integral equation are in the 
form: 
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where the fundamental solution of biharmonic equation 
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is given as a Green function 
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for a thin isotropic plate, xy −=r , δ  is Dirac delta and 
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is a plate stiffness. The coefficient )(xc  is assumed as: 

1)( =xc ,  when x is located inside the plate region, 

5.0)( =xc ,  when x is located on the smooth boundary, 

0)( =xc ,   when x is located outside the plate region. 
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The second equation can be derived by substituting of unit concentrated force 
** 1P =  unit concentrated moment ** 1=nM . It is equivalent to differentiate the first 

boundary integral equation (8) on n direction in point x on a plate boundary 
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2. Boundary conditions 

2.1. Clamped boundary 

The boundary conditions are formulated as follows: 

 













=
=
=
=

0

0

0

0

ns

s

n

M

w

ϕ
ϕ

   (10) 

The unknown variables are: the bending moment nM  and the shear force nT  (Fig. 2). 

 
  s 

n

Tn 

Mn 

 

Fig. 2. Variables presented on the clamped edge 



Free vibrations analysis of thin plates by the boundary element method in non-singular approach 79

2.2. Simply-supported boundary 

The boundary conditions are formulated as follows: 
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Fig. 3. Variables presented on the simply-supported edge 

The unknown values are: the shear force nT  and the angle of rotation in direc-

tion n, nϕ  (Fig. 3). 

2.3. Free boundary 

The boundary conditions are formulated as follows: 
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Fig. 4. Variables presented on the free edge 
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The unknown variables are: the deflection w  and the angles of rotation nϕ , sϕ  

(Fig. 5). Because the relation between sϕ and w  is known, 
s

w
s ∂

∂=ϕ , there are 

only two independent values: w  and nϕ . After discretization of a plate boundary 

into constant elements having the same length, parameter ( )y
s

w

∂
∂

 can be calculated 

approximately by constructing a differential expression using deflections of three 
neighbouring nodes (Fig. 5). 
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Fig. 5. Calculation of angle of rotation in tangent direction 

 ( ) ( )112

1
−+ −= ii

i
s ww

d
ϕ    (13) 

 ( )







 −+−= +−
−

11
1

2
1

2
2
31

iii
i

s www
d

ϕ   (14) 

 ( )







 +−= +−
+

11
1

2
3

2
2
11

iii
i

s www
d

ϕ    (15) 

The expressions (13) and (15) are needed for the nodes located on the left and 
right end of the free boundary. 

3. Construction of set of algebraic equation 

The set of algebraic equation can be written in the form: 
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where 

 ( )Nmmm ,...,,diag 21p =M    (17) 

2ωλ = , I  is the unit matrix and N  is the number of lumped masses. The elements 
of characteristic matrix: XXG  and wXG  contain integrals of suitable fundamental 
functions depended from type of boundary (Fig. 6). These integrals are calculated 
in local coordinate system ii sn  ,  and then transformed to coordinate system kk sn  , . 
The quasi-diagonal elements of characteristic matrix were calculated analytically 
and rest of them numerically using 12-point Gauss quadrature.  
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Fig. 6. Construction of set of algebraic equation 

The second matrix equation in the set of equation (16) is obtained by construc-
tion the boundary integral equations for internal collocation points. Elimination of 
boundary variables X  from matrix equation (16) leads to a standard eigenvalue 
problem: 
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4. Fluid-plate interaction 

A fluid is a source of additional inertia forces resulting from its mass and forces 
of radiation damping associated with energy dissipation. It is assumed that the 
plate is surrounded from all sides by the infinite fluid which is incompressible and 
inviscid. The velocity potential of the fluid for small disturbations is given in the 
form: 

 ( ) ( ) tiet   ~, ωϕϕ ⋅= xx   (20) 

where ( )zyx ,,=x  and ( )x ~ϕ  satisfies the Laplace equation: 

 ( ) 0 ~2 =∇ xϕ    (21) 

and ω  is the circular frequency. The solution of equation (21) can be expressed in 
terms the double layer potential by the following boundary integral equation: 

 ( ) ( ) ( )( ) ( )
∫ ∂

∂−=
∗

S
Q

Q

dS
z

P,Q
QQP

ϕϕϕϕ 21 
~~~   (22) 

where 

 ( ) ( ) 
1

4

1
  

P,Qr
P,Q ⋅=∗

π
ϕ   (23) 

is the fundamental solution of the Laplace equation (21), ( )Q1 
~ϕ  and ( )Q2 

~ϕ  are 

the amplitudes of the velocity potential above and below the surface, ( )P ~ϕ  is the 

amplitude of the velocity potential at any point of the space. 
 

 
 

 

Fig. 7. Calculation of the fluid velocity potential 

The hydrodynamic pressure acting on the plate surface:  
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Assuming that ( ) ( ) tiewtw   ~, ωxx =  is the normal displacement of the plate structu-

re, calculating the derivative of the fluid velocity potential and introducing the 
boundary condition of the Neumann’s type, it is possible to obtain: 
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where ( ) ( ) ( )QpQpQp 12
~~ −=∆  is the amplitude of the resultant hydrodynamic 

pressure at a point Q on the surface. 
After discretization of the plate surface into sub-surfaces with area nS ,  

the amplitude of displacements in arbitrary point (xm, ym) can be joint with the 
hydrodynamic pressure amplitude: 
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Equation (26) can be also written in a form: 

 pHw ~ ~ 4 2
f =− ωπρ   (27) 

where H is a (N × N) - square matrix, in which all elements are defined by the 
equations (28) 
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The hydrodynamic forces acting on the plate surface are: 

 wMP 2
f ω−=   (29) 

where 

 1
f f 4 −= SHM πρ   (30) 

nnn SpP  ∆=  and ( )NSS ...diag 1=S  collects the areas of the individual sub-surfaces 

and N is the number of internal sub-surfaces. Internal sub-surfaces are treated as 
a boundary elements of the “constant” type for surrounding fluid. 

Now, the set of algebraic equation describing vibration of a plate immersed in 
fluid has a form: 
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5. Numerical examples 

A rectangular and skew plates are considered. The results of calculation are 
verified using papers [17-19]. The set of boundary elements is regular. Each plate 
edge is divided by elements of the same length. The set of lumped masses is  
regular. The collocation points of boundary elements are located slightly outside 
the plate edge: dδε = .  

The i  th natural frequency can be expressed as follow:   
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where pρ  is plate density and coefficients iµ  are presented in tables for every 

example. 

5.1. A simply-supported square plate 

Number of boundary elements: 120, number of lumped masses: 100. 
The plate properties: Ep = 205 GPa, vp = 0.3, hp = 0.01 m, h = l = 2.0 m,  

7850p =ρ  kg/m3, ε  = δ /d = 0.01.  

 
 

 
 

Fig. 8. A simply-supported plate 

Table 1 
Numerical results for the simply-supported plate 

Coefficients µi 
Frequency Analytical solution 

[17]  
Present solution 

MEB  
1 19.73912 19.74041 

2 and 3 49.34792 49.32904 

4 78.95673 78.87008 

5 98.96610 98.49901 
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Fig. 9. The first mode           Fig. 10. The second mode 

 

 

       
Fig. 11. The third mode           Fig. 12. The fourth mode 

 

  

 
Fig. 13. The fifth mode 

5.2. A clamped square plate 

Number of boundary elements: 120, number of lumped masses: 100. 
The plate properties: Ep = 205 GPa, vp = 0.3, hp = 0.01 m, h = l = 2.0 m,  

7850p =ρ  kg/m3, ε  = δ /d = 0.01. 
 

 

 

Fig. 14. A clamped plate 
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Table 2 
Numerical results for the clamped plate 

Coefficients µi 
Frequency MES solution  

[18]  
Present solution 

MEB  
1 3.49298 3.46216 

2 8.54690 8.49957 

3 21.44006 21.50939 

4 27.45986 27.61505 

5 31.17.008 31.10153 

 
 

      
Fig. 15. The third mode           Fig. 16. The fourth mode 

 
 
 

        
Fig. 17. The third mode           Fig. 18. The fourth mode 

 
 
 

 
Fig. 19. The fourth mode 

 x 

 y 

 x 

 y 

 x 

 y 

 x 

 y 

 x 

 y 



Free vibrations analysis of thin plates by the boundary element method in non-singular approach 87

5.3. A clamped square plate immersed in fluid 

Number of boundary elements: 120, number of lumped masses: 100. 
The plate properties: Ep = 205 GPa, vp = 0.3, hp = 0.05 m, h = l = 2.0 m,  

7850p =ρ  kg/m3, 1000f =ρ  kg/m3, ε  = δ /d = 0.02. 
 

 
 

 
 

 
 

 

Fig. 20. A clamped square plate immersed in fluid 

Table 3 
Numerical results for the clamped plate immersed in fluid 

Coefficients µi 
Frequency Analytical solution 

 [19]  
Present solution 

MEB  
1 1.80602 1.94414 

2 5.90702 5.45146 

3 11.00598 13.27127 

4 19.48201 18.62264 

5 21.56800 20.90014 

 
The lowest modes from first mode to fifth mode are similar to example 5.3. 

5.4. A skew plate, simply-supported on two opposite edges 

Number of boundary elements: 120, number of lumped masses: 100. 
The plate properties: Ep = 205 GPa, vp = 0.3, hp = 0.02 m, 5.1=xl m, 

0.1== yll m, 7850p =ρ  kg/m3, ε  = δ /d = 0.02. 
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Fig. 21. A skew plate, simply-supported on two opposite edge 

Table 4 
Numerical results for the clamped plate 

Coefficients µi Frequency 
Present solution MEB  

1 7.16064 

2 9.06183 

3 18.70131 

4 27.35135 

5 36.75122 

 
 

                  
Fig. 22. The third mode                   Fig. 23. The fourth mode 

 
 
 

                 
Fig. 24. The third mode     Fig. 25. The fourth mode 
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       Fig. 26. The fifth mode 

Conclusions 

In this paper a linear theory of free vibration analysis of thin has been pre-
sented. The boundary element method with modified formulation of boundary 
conditions was used as a numerical tool. In this formulation, there is no need to 
introduce the Kirchhoff forces at a plate corners and the equivalent shear forces at 
a plate boundary. The collocation version of boundary element method with con-
stant elements and non-singular calculations of integrals are employed. The source 
points of the boundary elements are located slightly outside a plate boundary, 
hence all of integrals of fundamental function are non-singular. The displayed 
boundary element results demonstrate the effectiveness and efficiency of the pro-
posed method, which can be applied especially in skew plates bending analysis. 
Obtained BEM numerical results were compared with results taken from analytical 
and finite element way. This approach can be useful in engineering analysis of  
structures. 
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