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Abstract. A free vibration analysis of Kirchhoff plates isegented in the paper. Using

proposed approach, there is no need to introducehKoff forces at the plate corner and
equivalent shear forces at a plate boundary. Twaamnn and independent variables are
considered at the boundary element node. The Bh#tizmem is used to derive the boundary
integral equation. The collocation version of boanydelement method with “constant” type

of elements is presented. The source points aedddcslightly outside a plate boundary,
hence the quasi-diagonal integrals of fundaméduatedtions are non-singular.

Introduction

The Boundary Element Method (BEM) was created esmpletely independ-
ent numerical tool to solve engineering problems2]1 The BEM do not require
the all domain discretization but only the boundaia considered structure. This
method reduces the computational dimension by one.

The Boundary Element Method is often used in theom of both thin and
thick plates and is particulary suitable to analyseplates of arbitrary shapes and
rested on internal supports. Analysis of plate bendsing BEM was introduced
by Bezine [3] and Stern [4] for Kirchhoff plate trg and by Vander Weeén [5]
for the thick plate theory. Okupniak and Sygulskj {ised fundamental solution
of Reissner plate proposed by Ganowicz [7]. Sontbass present a modified
approach of thin plate analysis. El-Zafrany, Déb&and Fadhil [8] assumed non-
zero distribution of stress over the plate thiclnésartley [9] proposed the BEM
to solve similar problems. Guminiak [10, 11], Guraky and Sygulski [12]
assumed a physical boundary condition also disdussthis paper.

Modelling of plate bending problem in free vibratianalysis requires modifi-
cation of governing boundary integral equation. iB&Z3] proposed approach in
which, the forces at the internal collocation peirdre treated as unknown
variables. Katsikadeligt al [13], Providakis and Toungelidis [14] and Shi][15
applied technique of Bezine to solve dynamic protslef thin plate. The second
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approach was proposed by Rashed [16] in applicaifoa coupled BEM-flexi-
bility force method in bending analysis of plataghwinternal supports.

Present paper includes a modified formulation 'mding analysis of plates, in
which three geometric and three static variablehatplate boundary are consid-
ered. In this formulation there is no need to idtrce the equivalent shear forces
at the boundary and concentrated forces at the ptaners. Similar to Hartley [9],
the source points were located slightly outsidéageoundary, hence all of quasi-
diagonal integrals are non-singular.

1. Integral formulation of thin plate bending in modified approach

On the plate boundary there are considered ampbtwd variables: the shear
force T,, bending momentM ,, torsional momentM . and deflectionw, angle
of rotation in normal directiorp,, and angle of rotation in tangent directigy.
Only two of them are independent. The boundarygmaieequation are derived

using Bettie theorem. Two plates are considerdiia plate, subjected unit con-
centrated loading and the real one (Fig. 1).

The first group of the forces (infinite plate)

M n* — bending moment

1\ 'S
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X The second group of the forces ’\(/{egLBIL%tlgg
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y z
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M s — torsional
moment

@, — rotation angle

in n direction Tn — shear force

m; — lumped masses

X =X (Xq, %) - the source point
y =V (X, %) - the field point

Fig. 1. Variables present in the boundary integoplation
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A free vibration problem of thin plate is consid&rén each internal collocation
point associated with single lumped mass theréntreduced displacement vector
W , acceleration vectow and inertial forceB; (Fig. 1)

w =W sinwt (1)
hence
W =-w?W sinwt 2)
Then, the inertial force amplitude is described
B = mW, (3)

where « is the plate natural frequency. To derive integ@ation the static fun-
damental solution is used. As a result the bound@egral equation are in the
form:

c(x) Ov(x) + | [Tn* (v, X) BW(Y) =M (¥, X) B, (Y) =M (¥, %) Ws(y)] dr(y) =
= I[Tn (Y)W (y,X) = M, (y) [5, (Y, X) = M s (Y) s (y,X)] Ldr (y) + (4)
+3 B, W ()
i=1
where the fundamental solution of biharmonic eaqumati
O'w= Bly -X) ©

is given as a Green function

. 1 r?
W (y,x)=3;—ﬂlnr (6)

for a thin isotropic platey = |y - x|, 0 is Dirac delta and

E3
oo ER

S 120-v2) %

is a plate stiffness. The coefficieafx) is assumed as:
c(x) =1, when x is located inside the plate region,
c(x) = 05, when x is located on the smooth boundary,
c(x)=0, when x is located outside the plate region.
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The second equation can be derived by substitwaingnit concentrated force
P" =1 unit concentrated momet , =1 . It is equivalent to differentiate the first
boundary integral equation (8) ordirection in pointx on a plate boundary
€00 B 00+ 1| T 430 E(y) =M y,) 48, () ~M sy ) () | 6 () =
r

=] [Tn (V%) TW (Y,X) = M () 6, (¥, %) = Mg (¥) DZS(y,x)} i (y) + (8)

.

| —%
+2.B v (i,x)

i=1

where

(Tl o) My ) My X)Wy ). B2y ). (o) | =

o [ . . . . )
=5 {2y x) My )My ), w2y ), 83y ). 65 (v )
n(x)
2. Boundary conditions
2.1. Clamped boundary
The boundary conditions are formulated as follows:
w=0
$,=0
5.0 (10)
M. .=0

ns

The unknown variables are: the bending monéptand the shear forcg, (Fig. 2).

.

Fig. 2. Variables presented on the clamped edge
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2.2. Simply-supported boundary
The boundary conditions are formulated as follows:

w=0
$s=0
M,=0
M,=0

(11)

n ¢
Fig. 3. Variables presented on the simply-suppoetige

The unknown values are: the shear foigeand the angle of rotation in direc-
tionn, ¢, (Fig. 3).

2.3. Free boundary

The boundary conditions are formulated as follows:

T,=0
M, =0 (12)
M =

Fig. 4. Variables presented on the free edge
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The unknown variables are: the deflectiwnand the angles of rotatiog,, @,
(Fig. 5). Because the relation betwegpand w is known, @, =?3_st’ there are
only two independent valuesv and ¢, . After discretization of a plate boundary
into constant elements having the same Iengthm:etmaa—qu(y) can be calculated

<

approximately by constructing a differential exgiea using deflections of three
neighbouring nodes (Fig. 5).

i 1
¢£) :%(Wiﬂ_wi—l) (13)
o _1( 3 1
¢£ 1) :E[_Ewi_l+2wi —Evviﬂj (14)
i+ 1(1 3
g :E(E\Ni—l — 2w +§\Ni+lj (15)

The expressions (13) and (15) are needed for tHesntmcated on the left and
right end of the free boundary.

3. Construction of set of algebraic equation

The set of algebraic equation can be written infone:

G -AE X 0
XX Xw - (16)
wa —/IEWWM p+| W 0
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where
M, =diagm,m,,...my) (17)

A=d?, | is the unit matrix an®l is the number of lumped masses. The elements
of characteristic matrixG,yx and G,,x contain integrals of suitable fundamental
functions depended from type of boundary (Fig.Téjese integrals are calculated
in local coordinate system,§ and then transformed to coordinate syst@ns, .

The quasi-diagonal elements of characteristic matgre calculated analytically
and rest of them numerically using 12-point Gaussdgature.

Fig. 6. Construction of set of algebraic equation

The second matrix equation in the set of equatl@®) {s obtained by construc-
tion the boundary integral equations for internalacation points. Elimination of
boundary variables< from matrix equation (16) leads to a standard reighie
problem:

{p-Tojw=0 (18)
where A =1/« and

A :{EWW M =G, [Gux] " Exu M} (19)
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4. Fluid-plate interaction

A fluid is a source of additional inertia forcesud#ing from its mass and forces
of radiation damping associated with energy diggpa It is assumed that the
plate is surrounded from all sides by the infirfited which is incompressible and
inviscid. The velocity potential of the fluid formall disturbations is given in the
form:

#(xt)=9 ()" (20)
wherex =(x y, z) and & (x) satisfies the Laplace equation:
0% (x)=0 (21)

and « is the circular frequency. The solution of equat{#l) can be expressed in
terms the double layer potential by the followirauhdary integral equation:

3(7)=1(#,(0)-7,(0) 2", @)
s Q
where
¢D(P,Q)=%T % (23)

is the fundamental solution of the Laplace equaf®t), #,(Q) and #,(Q) are
the amplitudes of the velocity potential above aetbw the surfaceg (P) is the
amplitude of the velocity potential at any pointtioé space.

Fig. 7. Calculation of the fluid velocity potential

The hydrodynamic pressure acting on the plate serfa

p=-p w (24)
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Assuming thatw(x,t)=W(x)e'“* is the normal displacement of the plate structu-

re, calculating the derivative of the fluid velgcipotential and introducing the
boundary condition of the Neumann’s type, it isgibke to obtain:

~ a%p"(P,
-py c«fw(P):JAlo(Q)—;j P9, (25)
S zpazQ
where Ap(Q)z EZ(Q)—ﬁl(Q) is the amplitude of the resultant hydrodynamic

pressure at a poiiQ on the surface.
After discretization of the plate surface into surfaces with areaS,,

the amplitude of displacements in arbitrary poixt, f/) can be joint with the
hydrodynamic pressure amplitude:

_ 1 N 0° 1
W WX, Y ) =———— . 0p, [—| =1 d 26
WX, Yon) 47T,qr12::1p3{62,2n{r}z% (26)
Equation (26) can be also written in a form:

—47p, PW=HP (27)

where H is a (N x N) - square matrix, in which all elements are defity the
equations (28)

=0
H.,.=[—|=|d 28
Loz )% )
The hydrodynamic forces acting on the plate surtaee
P=-M,,wfw (29)
where
M, =4mp,SH™ (30)

P, =Ap, S, and S=diagS...S,) collects the areas of the individual sub-surfaces

andN is the number of internal sub-surfaces. Interndlk-surfaces are treated as
a boundary elements of the “constant” type for@umding fluid.
Now, the set of algebraic equation describing ttibraof a plate immersed in

fluid has a form:
G -1E X 0
G ~—AE,wM+I||lw 0

M=M,+M,

where
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5. Numerical examples

A rectangular and skew plates are considered. €balts of calculation are
verified using papers [17-19]. The set of boundglgments is regular. Each plate
edge is divided by elements of the same length. Séteof lumped masses is
regular. The collocation points of boundary elemmemte located slightly outside
the plate edges = Jd/d .

Thei ™ natural frequency can be expressed as follow:

a=t 0
1<\ o, [hy

(32)

where p, is plate density and coefficientg are presented in tables for every
example.

5.1. A simply-supported square plate

Number of boundary elements: 120, number of lumpadses: 100.
The plate properties, = 205 GPay, = 0.3,h, = 0.01 m,h =1 = 2.0 m,
p, =7850kg/nT, & =J/d=0.01.

Fig. 8. A simply-supported plate

Table 1
Numerical resultsfor the simply-supported plate
Coefficientsys
Frequency | Analytical solution Present solution
[17] MEB
1 19.73912 19.74041
2and 3 49.34792 49.32904
4 78.95673 78.87008
5 98.96610 98.49901
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Fig. 13. The fifth mode

5.2. A clamped square plate

Number of boundary elements: 120, number of lumpadses: 100.
The plate properties, = 205 GPay, = 0.3,h, = 0.01 m,h = | = 2.0 m,
p, =7850kg/nT, & =J/d=0.01.

Fig. 14. A clamped plate
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Numerical resultsfor the clamped plate

Coefficientsy
Frequency MES solution Present solution
[18] MEB
1 3.49298 3.46216
2 8.54690 8.49957
3 21.44006 21.50939
4 27.45986 27.61505
5 31.17.008 31.10153

Fig. 19. The fourth mode

Table 2
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5.3. A clamped square plate immersed in fluid

Number of boundary elements: 120, number of lumpedses: 100.
The plate properties, = 205 GPay, = 0.3,h, = 0.05 m/h = | = 2.0 m,
p, =7850kg/nT, p; =1000kg/nt, & =d/d=0.02.

Y7774

Fig. 20. A clamped square plate immersed in fluid

Table 3
Numerical resultsfor the clamped plateimmersed in fluid
Coefficientsys
Frequency | Analytical solution Present solution
[19] MEB
1 1.80602 1.94414
2 5.90702 5.45146
3 11.00598 13.27127
4 19.48201 18.62264
5 21.56800 20.90014

The lowest modes from first mode to fifth mode sirailar to example 5.3.

5.4. A skew plate, simply-supported on two oppasitges

Number of boundary elements: 120, number of lumpadses: 100.
The plate propertiesE, = 205 GPa,v, = 0.3, h, = 0.02 m, |, = 15n,

| =1, =10m, p, =7850kg/n?, ¢ =4/d=0.02.
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Fig. 21. A skew plate, simply-supported on two cffedge

Table 4

Numerical resultsfor the clamped plate
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Fig. ZBe fourth mode

Fig. 22. The third mode

Fig. 25. The fourth mod

Fig. 24. The third mode
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Fig. 26. The fifth mode

Conclusions

In this paper a linear theory of free vibration lges of thin has been pre-
sented. The boundary element method with modifie@anélation of boundary
conditions was used as a numerical tool. In thisntdation, there is no need to
introduce the Kirchhoff forces at a plate cornard the equivalent shear forces at
a plate boundary. The collocation version of boupaddement method with con-
stant elements and non-singular calculations efjiratls are employed. The source
points of the boundary elements are located siightitside a plate boundary,
hence all of integrals of fundamental function aen-singular. The displayed
boundary element results demonstrate the effects®@and efficiency of the pro-
posed method, which can be applied especially @wsglates bending analysis.
Obtained BEM numerical results were compared wetults taken from analytical
and finite element way. This approach can be usefwngineering analysis of
structures.
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