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Abstract. In this paper the problem of randomly excited vibration of a Bernoulli-Euler 

beam with an elastic support is considered. The pointwise, stationary random in time force 

effects on the beam in a fixed point, exciting its transverse vibration. The statistical pro-

perties of the response are described in terms of covariance of the random excitation.  

The effect of position of the random force as well the rigidity of the elastic support on the 

standard deviation of the beam deflection has been numerically investigated. 

Introduction 

The problems of vibrations of beams subjected to random excitations are of 

great practical importance. Beams are elements of many engineering structures (for 

instance machines, buildings, bridges), and their random excitations can cause 

fluid pressure, earthquake loads, moving or impact loads. Mathematical descrip-

tion of transverse vibrations of the beams based on Bernoulli-Euler or Rayleigh 

beam theories establish the fourth order partial differential equations, which are 

completed by suitable initial and boundary conditions. 

The vibration analysis of the beams excited by random loads are the subject  

of papers [1-4]. In reference [1], Dahlberg uses the modal analysis technique to 

investigate the influence of modal cross-spectral densities on the spectral densities 

of some responses of simply supported beams. The random response of damped 

beams was studied by Jacquot in reference [2]. The author presents a method  

of vibration analysis using the response power spectral density function and mean-

square response of considered beam structures excited by a second stationary ran-

dom process. In paper [3] Kukla and Skalmierski dealt with the random vibration 

of a clamped-pinned beam. The flux of energy which is emitted by the vibrating 

beam was investigated. Papadimitriou et al. in work [4] provide a methodology for 

optimal establishment of the number and location of sensors on randomly vibrating 

structures for the purpose of the response predictions at unmeasured locations in 

structural systems. The authors referees the results of considerations to randomly 

vibrating beams and plates. 

In the present paper, the transverse vibrations of a beam induced by a random, 

pointwise force, are analysed. The excitation force is assumed in separable form as 
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a stationary random in time process. The variance of the random beam deflection 

has been derived. The analytical solution was used in numerical investigations of 

the beam vibration excited by white noise process.  

1. Formulation and solution to the problem 

Consider a beam randomly loaded by a transverse force p(x,t). The vibration of 

the beam is governed by the differential equation 
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where c is the damping coefficient, m is the mass per unit length of the beam, E is 

Young’s modulus of elasticity, I is the moment of inertia of the beam cross-

section, and w(x,t) represents the beam’s deflection at the cross-section x at time t.  

At each end of the finite beam two conditions must be satisfied, which may be 

written symbolically in the following form 
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where B0 and B1 are linear, spatial, two dimensional differential operators and L 

denotes the length of the beam. 

The solution of the problem is searched in form of a sum 
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where functions yk(x), k = 1, 2,…, satisfied the differential equation 
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and the following boundary conditions:  
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The functions yk(x) as solutions of the eigenproblem (4, 5), create an orthogonal 

system of functions in interval [0,L]. It means that 
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where 
lk

δ  is the Kronecker delta and  ( )[ ] .
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Substituting the function w(x,t) in the form given by equation (3) into differential 

equation (1), multiplying the obtained equation by the function yl(x) for l = 1, 2,…, 

after integrating both sides of the equation in limits 0, L, and using (6), the follow-

ing equations are obtained: 
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Note that ( ) 0=tpk
~  for t < 0, since p(x,t) = 0  for t < 0. 

The solution of the differential equations (7) with zero initial conditions and 

,10 <≤
k
ζ  can be expressed by Duhamel’s integral as 

 ( ) ( ) ( )∫
+∞

∞−

−= τττφ dptGt
kkk

~   (9) 

where Gk(t) is a Green’s function which is given by [5]: 
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The statistical properties of the output signal can be described in terms of  

covariance ( ).,,,
2121
ttxxC

ww
 In light of equation (3), the function is given by 
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where ( ) ( ) ( )[ ]
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φφφφ =  and [ ]⋅E  denotes mathematical expectation. 

Introducing the function: ( ) ( )dxttxxCttC
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where the covariance ( ),,
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If excitation force may be written in the separable form: p(x,t) = P(x) ϕ(t), where 

ϕ(t) is a random function, then the covariance ( )
21
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C  evaluated on the basis 

of equation (8) is given as 
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Assume that the input signal is a stationary process, i.e. the following condition 

is satisfied: ( ) ( ).,
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kkk ppp CC  In this case, for the process given by equa-

tion (9), the following relationship holds [7]: 
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where the over bar denotes complex conjugate, the function ( )ωikG
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 is a Fourier 

transform of Gk(τ) i.e.: ( ) ( ) .
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In case of separable excitation force, using equation (15), the spectral density 
( )ω

kp
S ~  of the stationary process becomes 
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For the white noise excitation, the spectral density Sϕ(ω) takes the form: 

Sϕ(ω) = S0, where S0 is the constant value.  

The variance of the output process for the white noise input process, on the ba-

sis of equations (13), (16), (18), may be expressed by 
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The equation (19) shows that the variance is not dependent from t: 
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If the excitation force p(x,t) = P(x) ϕ(t) is stationary random in time t and effect 

pointwise on the beam at x = x0, then assumes: ( ) ( ),
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Dirac delta function. In this case the coefficients bk occurring in equation (19), are 

given in the form: ( )0
22

0 xyPb kk = , k = 1, 2,… . Moreover, the Fourier transform 

( )ωkG
)

 of the function Gk(t) given by equation (10), can be written in the form 
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Finally, after evaluation of the integral which occurs in equation (19), the variance 

σ 

2
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The coefficients dk can be determined when the eigenfunctions yk(x) of the prob-

lem (4), (5) are known. 

2. Numerical example 

Consider the random vibration of a simply supported beam. The boundary con-

ditions, the eigenfunctions yk(x) and the eigenfrequencies ωk corresponding to the 

beam are: 
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The coefficients dk are given by: ,
2

L
d
k
=  and on the basis of (21) becomes 

 ∑
∞

=









=

1

0

4

32

02
sin

12

k

p

L

xk

k

L

EIc

SP π

π

σ   (24) 

 

L

k
s

EI, m

x
0

P
0

x

w

 

Fig. 1. A sketch of the pinned-free beam with a tip elastic support 

The second example concerns the beam of which the left end (x = 0) is simply 

supported (pinned) and the right (x = L) is supported by a translational spring with 

the spring constant ks. The boundary conditions for x = 0 are the same as in the 

first example (equation (22a)), and for x = L there are as follows:  
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The eigenfunctions can be written in the form: 
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with .
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excitation force effects pointwise on the beam at x = x0 , the variance of the pro-

cess on the basis of equation (21) in the following form can be written: 
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Fig. 2. Normalized standard deviation (σ/σ0 of the beam deflection versus position (x/L)  

of poinwise stationary random excitation force  

The normalized standard deviation of the random vibration of the beam with 

one end simply supported and the other free using equation (29), has been numeri-

cally evaluated. It is assumed that the beam at the free end is elastically supported 

and subjected at the position x0/L to a pointwise, stationary random excitation 

force. The calculations were performed for various values of the coefficient Ks 

characterizing the spring constant. The standard deviation was normalized with 

respect to the factor calculated as the standard deviation of the beam deflection 

with non-dimensional spring constant Ks = 0.5, when the force effects at  x0/L = 1. 

The normalized standard deviations as functions of position of the excitation force 

are presented in Figure 2. The solid line was plotted with assumption that the Ks 
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tends to infinity, i.e. the case of simply supported beam is obtained. In this case, 

the standard deviation of beam deflection can be obtained as the square root of 

variance given by equation (24). The curves in Figure 2 show that value of the 

standard deviation can increases several times when the coefficient Ks decreases.  

Conclusions 

In this paper, an investigation of the random vibration of a Bernoulli-Euler 

beam with an elastic support is presented. Solution of the problem is obtained in    

analytical form. The covariance of the response is expressed by the covariance of 

excitation process. In numerical calculations it is assumed that the beam vibration 

is excited by white noise process. The results show that the position of the random 

force as well the rigidity of the elastic support significantly effect on the standard 

deviation of the beam deflection. Although the example presented concern the 

simply supported - free beam with elastic support at free end, the approach can be 

applied to beams with another end constraints and discrete attachments. 
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