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THE CONCEPT OF A NEURAL INTUITIVE 

PREDICTION MODEL 

Henryk Piech, Aleksandra Ptak, Dariusz Leks 

Institute of Mathematics and Computer Science, Czestochowa University of Technology 

Abstract. For the modeling of multi-parameter and intercorrelated phenomena, a spatial 

neural network with mutual connections of neurons (Fig. 1) can be used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Spatial structure of a neural network with mutual inter-layer (interplanar) connections 
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The prediction of complex situations can be based on forecasts which are usually 

related to phenomena with a low dynamism of progress and a high predictability, 

or on intuitive mechanisms. The prediction of phenomena with a large parametric 

range, a high rate of their variability and a considerable level of unpredictability is 

distinguished by intuitiveness which is surprising in terms of both the turn of 

events and their progress. By using a probabilistic description, forecasting and 

intuitive activities can be represented as in Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Forecasting and intuitive predictions, where                       - the least probable 

events,                      - the most probable events 

Each event is described by the set of parameters S(i) = {a(i,1),a(i,2),..., a(i,n)}, and 

the probability of its occurrence depends on time and is P(S(i),t) (Fig. 3). 
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Fig. 3. Contour lines of the distribution of probability of events S as a function of time 
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1. Preparing the network for intuitive prediction 

The next stage of preparing the neural network is the learning stage, for which 

we must choose those events that we feel intuitively rather than the most probable 

ones. The selection of these events will be made based on the empirical distribu-

tion (Fig. 4), which we create by using the contour lines in Figure 3 and consider-

ing the preferences of the intuitive zone by placing them in the centres of the nor-

mal distribution curves. 
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Fig. 4. Empirical event occurrence probability distribution modified for the preference 

of intuition zone interaction (0.4-0.6), for t = 2 

This preparation of the empirical distribution will enable us to generate events (by 

the von Neumann method) which will be used in the neural network learning proc-

ess. By choosing randomly point T(x,y), we verify the condition y<=g(x) that, in 

our case, is satisfied, which allows us to choose the event s(5) = round(x). As we 

have already stated, events are described by the set of output parameters that will 

be the result of processing the input parameters by the network. Parts of the input 

and output parameters may, of course, overlap, and the way of input data connec-

tion can be either parent (internal) or invasive (external) in character. 
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Fig. 5. The principle of interaction of the blocks (planes) of a neural network 

2. Topology of connections and their matrix recording 

The spatial network is composed of  the  planes of classical neural structures. 

In order to describe each of these planes, the number of layers and the number of 

neurons in each layer must be indicated. In the proposed arrangement of neural 

planes (Fig. 1) connections between the planes must be additionally recorded, 

which can be done by using the matrix of connections (Fig. 6). Inputs to, and out-

puts from the flat neural systems are also indicated in the figure. 

 

 

 1,0,0 2,1,0 0,0,0 4,6,0 5,0,0 6,5,0 

 1,4,5  2,0,0 0,0,0 4,0,0 5,4,6 6,0,0 

MC = 1,0,0 2,3,0 3,1,0 4,0,0 0,0,0 6,0,0 

 1,0,0 2,0,0 3,0,0 4,2,0 0,0,0 0,0,0 

 0,0,0 2,0,0 3,0,0 0,0,0 0,0,0 0,0,0 

 

Fig. 6. Matrix of connections recording the topology of the spatial neural structure 

shown in Fig. 7 
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Fig. 7. Neural network structure built of 6 planes and interplanar connections indicated 

by arrows (Pi - i-th plane, Wj - j-th layer) 

Prior to proceeding with recording connections, the planes should be arranged 

chronologically so that the transfer to the k-th layer of a given plane occurs always 

from the level of the (k-1)st layer of another plane. The matrix shown in Figure 6 

has as many columns as the number of planes and as many layers as comprised 

by the global structure of chronologically ordered planes. The matrix is composed 

of sets, whose size is equal to the maximum number of connections of one of the 

layers of a particular plane. 

3. Modification of the neural conversion algorithm 

for the spatial structure 

Fig. 8a. Algorithm of the interactions of internal (y) and external (z) parameters: k - layer 

number, i - number of a neuron in the k-th layer, j - number of a neuron in the k-1st layer; 

Ski - sum of arguments in the i-th node; w, v - weights; l - number of the external module 

j - number of a connection 
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Fig. 8b. Simplified algorithm of partitioning the output error 

from the preceding k-1st internal layer 

Figure 6a and b shows simplified variants of algorithms accounting for the inter- 

action of external neural structures (planes). This interaction can be described in 

a greater detail by the following formulas: 

                                                          n(l)                                              lp  n(l-1,p) 

 y(i(l),l,r) = f(Σ w(i(l),i(l-1),l,r)*f (Σ   Σ w(i(l-1),i(l-2),(l-1),p)* (1) 
                                                        i(l)=1                                          p=1 i(l-1)=1 

                                                                        n(l-2,p) 

*f (Σ w(i(l-2),i(l-3),(l-2),p)* 
                                                                        i(l-2)=1 

                                                     n(0,p)  

                   *f (Σ w(i(1),i(0),1,p)*x(i(1),i(0),1,p))...) 
                                                               i(0)=1 

where: 

 y(i(l),l,r) - signal at the output of the i(l)-th neuron of the l-th layer, r-th 

plane 

 w(i(l),i(l-1),l,p) - weight of the signal transferred from the i(l-1)-th neuron of the 

l-1st layer, p-th plane to the i(l)-th neuron, l-th layer, r-th plane 

 x(i(1),i(0),1,p) - signal at the i(1)st input of the1st layer, p-th plane 

 n(l,p) - number of neurons of the l-th layer, p-th plane. 
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The target function for, e.g., learning samples can be represented as follows: 

                                                                       np   lp  n(l (p),p 

 F(W) = 1/2 Σ  Σ  Σ (yj(i(p),l(p),p)-dj(i(p),l(p),p))
2
 (2) 

                                                                      j=1 p=1 i(p)=1 

where dj(i(p),l(p),p)) - j-th learning sample at the i(p) output of the l(p)-th layer, 

p-th plane. 

After differentiating relationship (2), we obtain gradient components in relation to 

the weights: 

                                                      np  n(l(p),p)                                                               l 

∂F/∂w(i(l),i(l-1),l,p) = Σ  Σ(y(i(p),l(p),p)-d(i(p),l(p),p))Πdv(i(s),p)/dv(i(s-1),p) (3) 
                                                     p=1 i(p)=1                                                            s=l(p)(-1) 

where: v(i(l),p) = function of conversion of the sum of the products of weights and 

signals at the output of the (l)-th neuron of the l-th layer, p-plane, d(v(i(0,p) = 

= w(i(1),i(0),1,p). 

The gradient components are used for estimating the weight increment, ∆w[   ]. 

Conclusions 

1. Forecasting prediction which is based on the theory of probability does not 
always yield solutions positively verified by reality. Intuition is a phenomenon 

which is unexamined and not described by the mathematical apparatus. Many 

a time, intuition is supported by experience, which would encourage us to or-

ganize expert systems. Anyway, it appears fully justifiable to use neural struc-

tures, for example, with back propagation (or in other their variants and variety 

of learning and conversion). 

2. When examining a spatial system, the intercorrelation effects between planes 

can be regulated by making their relative shifts. These shifts are chronological 

in character, as they actually mean a displacement in time. 

At the same time, they constitute additional parameters of learning optimization 

and modeling quality. 

3. Describing situations through events and their parameters (Fig. 1) enables vari-

ous real cases to be arranged, which creates an opportunity to move in a chosen 

sphere within the convention of the capability of intuitive predicting a situation. 

4. A complex task is associated with the preparation of the learning set. This 

results not only from the multitude of parameters affecting the events, but also 

from difficulty in creating or recording a situation, in which intuition suggests 

an unexpected option that will subsequently appear to be positively verified 

(confirmed) by reality. 
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