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Abstract. In the paper the symmetric Poisson structure on linear has been applied. A con-
nection of this structure with Lie bracket has been detined.

Let V' be a linear algebra over R and let
A VxV-o>V

be a skew - symmetric 2-linear mapping satisfying the conditions
Aler B.y)=ad(B.y)+ pA(cc. ) 0]
A(Al, B)y)+ Alaly.). p)+ A(A(B.y )er) = 0 (ii)

forany o, B,y V.

The mapping 4 is said to be a Poisson structure on V" and the pair (V, 4) we will
called a Poisson linear algebra.
From definition it follows that for any o € V' the mapping

D, = A(,a):V >V

is a derivation of the algebra V.
It is easily to prove.

Proposition 1. The set D(V) of all derivations D, of V'is a linear space over R.
Moreover D(V) is a Lie algebra with the Lie bracket given by

Ip,.0,]=D,-D,~D,-D, @)
forany D,,D; € D(V).
Proposition 2. Forany o, eV

[D,.0,] =D 3)
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An element o €V is said to be a Casimir element of V' with respect to A4, if
Ala, )=0 for any BeV. The set of all Casimir element of ¥ with respect to

A we denote by V(A . Evidently the pair (V,A) is a Lie algebra and V(A is its ideal.

Now let 7:V — V' be a mapping satisfying the condition

A(T(@), p)=-4le. T(B))
forany o, feV.

“

Proposition 3. A mapping 7 :V — V' satisfying the condition (4) has the follo-

wing properties:
Tla+B)=T(@)+T(B)+r
T(x-a): xT(a)+6
forany a, BV and x eV, where y and & are some elements of V.

Proof. For any a, BV by (4) we have.
AT (a+ B)y)=-Ala+B.1()=-Ala.T(y)- 4(8,T(y)) =
= A(T(@).y)+ AT (B).7)
Hence
AT (e + p)-T(@)-1(8).7)=0
which gives

T(a+p)=T(a)+T(8)+y

for some y € V(A
Similarly we have

AT (xa), B)=-A(xe, T(B)) = —xA(e. T(B)) =
= xA(T (@), f)= AT (@), B)
Hence

AT (x,0) - xT(ex), ) =0

()
(i)

which gives T(xa)=xT(ex)+ & for any a eV, x eV where § is some element

of V.
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One can easily top prove
Proposition 4. A mapping 7 :V — V satisfying the condition (4) satisfies also the
conditions.

Alr (@), p)= (1) 4l (p)) (i
"o+ B)=T"()+T"(B)+r (ii)
T" (xat)=xT" () + 6 (iii)

forany a,feV,xe VCA and ne N,where y and ¢ are some elements of V(fl.

Proposition 5. If a eV then T(a)e V. In consequence ¥ is a T-invariant
linear subspace of the linear space V.

Proof. Let aeV/, then for any feV A(a, ,8): 0, for any SeV. Therefore
T (a)e VA
Let us put

S(a, B)= AT (), B) (5)

forany o, feV.

Evidently the formula (5) defines a 2-linear mapping S:V xV — V.
Lemma 6. The mapping S defined by (5) is symmetric one.
Prof. From (4) and (5) it follows

S(ee, p)= AT (@), B) = —Ale.T(B)) = AT(B). @) = S(B,)
forany o, f eV .

Now we will prove

Proposition 7. The mapping S defined by (5) satisfies the identities

S(T (). B) = -s(.7(B)) (i)
S B.y)=aS(B.y)+ pS(a.y) (i)
S(S(T (@), B)y)+ ST ()), B)+S(ST(B).y)a)=0 (iif)

forany a, B,y V.
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Proof. (i). Using (4) and (5) we get
S(a.7(p))= A(TT(2).7(5))

forany o, BeV.

I
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o
ey
}‘—/
=
S
N—
I
|
a
=
Q
b—/
oy
N—

(i) From (4) and (5) as well as from definition of 4 we get
Sla- p.y)=~Ala- pr(y)=
=—~oA(B.7(7))~ pAler.T(y) =S (B.7)+ BS(ar.7)

forany a, B,y V.
(iii) Analogically we get

forany a, B,y €V.

So, we may accept

Def. 1. A mapping S, defined by (5) is said to be a symmetric Poisson structure on
a linear algebra V over R.
From proposition 5 (ii) it follows that for any « € V' the mapping

5,=S(a): V>V (6)

is a derivation of the algebra V.

Proposition 8. The set A(V) of all derivations 6, of €V, is a linear space

over R. Moreover A(V) is a Lie algebra with a Lie bracket given by
|6,.6,|=8,-6,-6,-85,

forany 6,,0, € A).
From (1), (5) and (6) it follows the relation
o0,=-D

for any « € V" and consequently [5a,5ﬁj~ T =04(r(q)p) forany a, SeV.

Def. 2. Anelement o €V is said to be a Casimir element of V" with respect to S, if
S(a,ﬂ): 0 forany peV.
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The set of all Casimir elements of V" with respect to .S we denote by V(q .
We shall prove.

Lemma 9. If a €V then T(a)e V.

Proof. Let € V. By Proposition 5 T(cx) V. Hence by (5)
S(e. p)= 4T (@), )= 0

for any SeV. Therefore a V.

Lemma 10. o €V in and only if T(a)e v

Proof. It follows from S(c, )= A(T(2), B) for BeV.

Lemma 11. If o €V then T(a)e V.

Proof. Let acV’ then S(x.f)=0 for any SeV. Hence S(a.TT(8))=
=—S(T(«). 8)=0 for any BeV. Therefore T(x)e V.
Corollary 12. VCS is T-invariant subspace of the linear space V.
Evidently, if 7:7 — ¥ is onto then ¥’ =V, In general case there is the inclusion
Ve SV

Let us observe also that (¥, S) is an algebra, which we shall call a symmetric

Lie algebra. Of course ¥ is an ideal of this algebra.
Let T:V — V' be a mapping satisfying the condition

Ale.7(B)=-A((). )
for any «, f € V. This mapping induces the mapping

T.:D(V)— D(V) (7)
given by
T.(D,)= Dy, (8)

for any D, € D(V).

Lemma 13. The mapping 7. Defined by (8) satisfies the condition
lﬂDa’DﬂJ:_lDa>T’;DﬂJ ©)

forany D,,Dj € D(V).
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Proof. Using from (5) we get forany D,, D, € D(V).

[:D,.. Dy |= D10y Dy |= Daigte)) =~Datri) =
~-[D,. D) |=-|D.. 7.0, ]

Now let us put
(20D, )|= |-D,.. D | (10)

forany D,,D, € D(V).

It is easily to observe that the formula (10) defines a 2-linear mapping.
[(.)]: D)% D) - D)
Lemma 14. The mapping [(--)] defined by (10) is a symmetric one.
Proof. By (9) and (10) we have
(0,8, £:0,.D,)=p,.1.0, |-|£.0,.0, |- (0.0,
for any D,,D, € D(V).
Proposition 15. The mapping [(-)] defined by (10) the following properties
(7.0,..0,)|=(D,..7.D, ) (i)
(0,000, 2} D, W, 0 k00 6
forany D,,D; € D(V).
Proof. (i) From (9) and (10) we get for any D,, D, € D(V)
\p,.7.0,)|= 1D, 7.0, |= -[1.DB,1.D, )= -|1.D,. D, |
(i) Now for any D, Dy, D, € D(V) we get

|z.D,.7.8,| 7.0, |+|[.D,.T.B,| .D, |+ |1.D,.T.B, | .D, | =
~lrp..7.0,}0)- (0, 70,1 0, |- [(7:0,. 7.0, } 2, )]

=0, 0,)} 0, N+ (0, 0, ) £y N+ (0,0, ) £, )= 0
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So, we shall accept
Def. 3. The mapping [(--)] defined by (10) is said to be a symmetric Lie bracket.
It is easily to prove.
Proposition 16. The mapping 7.: D(V)x D(V)— D(V') defined by (8) is a linear

one over V7.

Let (¥, A) be a Poisson linear algebra and let D(V) denotes the Lie algebra of
all derivations of V' defined by (1). Now, let

w:D(V)— D(V)
be a mapping satisfying the condition
(0,1, |- D0, an

forany D,,D; € D(V).

One can easily prove
Lemma 17. A mapping v : D(V)—> D(V) satisfying the condition (11) is a linear
one over R.
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