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Abstract. The main aim of this paper is to outline a new approach to the formulation of
approximate mathematical models for the analysis of non-stationary thermomechanical
processes in micro-periodic solids and structures. The modelling procedure is realized in
two steps. First, a system of finite difference equations is formulated by the periodic FEM
discretization of the unit cell for a solid under consideration. Second, by applying some
smoothness operations we derive continuum model equations directly from the finite diffe-
rence equations. In contrast to the known homogenization and tolerance averaging
methods, the proposed modelling approach can be formulated on different levels of accu-
racy which depend on the mesh parameter related to the periodic FEM discretization of
the unit cell.

Introduction

This paper summarizes and illustrates some from results which have been
obtained recently at the Institute of Mathematics and Informatics as a part of
researches on the heat transfer and elastodynamics of material systems with
a periodic structure. The main attention in this report is given to the formulation
of new mathematical models describing behaviour of periodic solids in nonstatio-
nary processes. In particular we investigate problems in which the minimum length
dimension of a macroscopic deformation and/or temperature pattern is large
enough when compared to the maximum period length of the material system
under consideration; these situations take place in many engineering problems, e.g.
in a study of overall properties of composite materials. At the same time the proc-
esses and phenomena related to the periodic structure of a solid medium, in the
course of modelling, are described in a certain approximated manner by means of
what are called averaged (or macroscopic) models of periodic solids. They are
models represented by PDEs with constant (averaged) coefficients. The main moti-
vation for introducing averaged models lies in the fact that the equations of ther-
momechanics for solids and structures with a micro-periodic inhomogeneity
involve, as a rule, functional coefficients which are highly oscillating and non-
continuous. The direct numerical solution to the initial-boundary-value problems
related to these equations is an ill-conditioned and complicated computational
problem, cf. [4]. This drawback does not take place for the averaged models.
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Modelling procedures leading from the well known solid mechanics equations
of periodic media to certain macroscopic models can be based on different mathe-
matical assumptions and physical (heuristic) hypotheses. Hence the averaged
descriptions of processes and phenomena occurring in micro-periodic solid media
can be formulated on different levels of accuracy. Generally speaking, in the existing
vast literature on this subject we deal with a variety of mathematical models of
material systems with a periodic structure.

The main trend in a formulation of averaged models of micro-periodic solid
media (including fluid saturated solids) is based on the fact that the related solid
mechanic equations involve lengths of a periodic structure which can be treated as
small when compared to a certain macroscopic length dimension. Thus, in the
course of modelling we deal at last with two spatial length scales (macroscopic and
microscopic) and we can introduce a certain small parameter 8 interpreted, from the
physical point of view, as a ratio between these scales. This fact is a basis for the
application of the asymptotic analysis to most of modelling procedures. The idea
of the asymptotic modelling lies in imbedding of the solid mechanics problem
under consideration (described by PDEs with periodic coefficients) into a family
of similar problems indexed by a small parameter E. It can be shown that by a limi t
passage s —>• 0 it is possible to obtain the averaged mathematical model of
the problem, i.e. a model which is governed by equations with constant coeffi-
cients. These coefficients are referred to as the effective moduli of a periodic
medium. The asymptotic modelling procedure outlined above is called homogeni-
zation and the resulting equations represent what is called a homogenized model of
the periodic solid. From a mathematical point of view homogenization of periodic
materials and structures is based on the asymptotic analysis of partial differential
equations and integral functionals with periodic coefficients; the bibliography on
this subject is very extensive, we mention here the outstanding monographs [2,4,
10, 12, 21]. The physical idea of homogenization lies in a replacing of a micro-
periodic nonhomogeneous solid by a certain equivalent homogeneous solid the
properties of which are described by the effective moduli. Thus, the main problem
of homogenization is to construct these moduli for the periodic solid under consi-
deration. To this end we have to solve a certain periodic BVP on the periodicity
cell, which is a standard problem in numerical analysis [4]. From the physical point
of view, the homogenization technique can be applied exclusively to situations in
which in an arbitrary but fixed periodicity cell situated away from the solid
boundaries, the fluctuations of basic unknown fields (like displacements and tem-
perature) can be approximated by periodic functions.

The main drawback of homogenized models for the analysis of non-stationary
processes in micro-periodic solids is disregarding in the model equations the effect
of microstructure size on the overall solid behaviour. This effect is destroyed in
homogenization by the limit passage s —>• 0 which corresponds to the hidden heu-
ristic assumption that the macroscopic material properties of a micro-periodic solid
are independent of the period lengths. On the other hand, many physical pheno-
mena, such as the dispersion of waves, the existence of higher-order motions and
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higher free vibration frequencies in periodic solids, depend on the microstructure
size. That is why the analysis of different phenomena occurring mainly in non-
stationary processes requires more general averaged models then those derived by
homogenization. This modelling requirement is well known in the literature and
resulted in elastodynamics by construction of a series of what are called dispersive
macroscopic models of periodic materials and structures. In most cases different
dispersive models were formulated independently for different material periodic
structures like laminates, fibrous solids, lattice-type structures etc., cf. [1, 3, 5, 6, 8,
9, 13-15, 22]. An overview of some from related models can be found in [14].

A general approach to the modelling of periodic composite materials, which
preserves the effect of the microstructure size on the overall solid behaviour, was
proposed in a series of papers summarised in monograph [26], where the list of
references can be found. This macro-modelling method was referred to as the tole-
rance averaging technique (for the concept of tolerance cf. [29]). The underlying
heuristic hypothesis of the tolerance averaging technique is similar to that which
constitutes the physical foundations of homogenization. In both approaches it is
assumed that away from the boundaries of the periodic solid the fluctuations
of basic unknown fields (displacements and temperature), caused by nonhomoge-
neous periodic structure of a solid, are periodic-like, i.e. in every periodicity cell
can be independently approximated by certain periodic functions. At the same time
the tolerance averaging, in contrast to homogenization, does not treat periods
of inhomogeneity as small parameters in the asymptotic meaning of this terms.
The main idea of this technique is based on heuristic assumption that the values
of every physical field can be measured and calculated only to within a certain
negligible quantity. This idea was introduced by G. Fichera in his paper [7] and
generalised in [26] by introducing the concept of the tolerance system. It is
a mapping which assigns to every physical field, which is unknown in the problem
under consideration, a certain tolerance parameter. These parameters determine
allowable deviations in calculations and measurements of values of the given
physical quantity and correspond to what was called in [7] the upper bounds for
negligibles. By combining the notion of the tolerance system with that of the
microstructure length (which can be defined as a diameter of a periodicity cell)
the tolerance averaging technique introduces the concept of slowly-varying and
periodic-like functions and makes it possible to specify certain approximations in
calculation of averaged values of products involving slowly-varying and periodic-
-like functions. The tolerance averaging technique leads to a certain periodic cell
problem but, in contrast to homogenization, this problem involves terms depending
also on the period lengths. Solutions to these cell problems are obtained
by applying the Galerkin approximation. To this end we can introduce certain
mode-shape functions and extra unknowns which are referred to as the fluctuation
variables. In thermomechanics this procedure leads to a system of PDEs with
constant coefficients for the averaged displacement and temperature fields as well
as for the fluctuation variables. The tolerance averaging technique has been applied
recently to the analysis of many engineering problems, cf. [11, 16, 24-28] and is
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used as a mathematical tool for some investigations which now are carried out in
Poland.

The scope of applications of both homogenization and tolerance averaging
technique is restricted to processes in which fluctuations of basic fields (like tem-
perature and displacement), caused by the periodic heterogeneity of a medium, are
periodic-like. As we have stated above it means that the above fluctuations,
restricted to an arbitrary but fixed periodicity cell situated away from the solid
boundary, can be approximated by periodic functions. More general modelling
technique, rejecting this restriction, was proposed recently in [18, 19] by the authors
of this report (cf. also [20, 23] and a series of related papers in the course of publi-
cation). In the framework of the proposed modelling technique the continuum
averaged models are derived not directly from the governing equations of micro-
periodic solids but from certain discrete models of these solids. The new discrete
models proposed by the authors of this report can be formulated on different levels
of accuracy and hence are able to describe also non stationary problems with wave-
lengths of an order of the periods lengths (high-frequency wave propagation prob-
lems). However, the passage from discrete to continuum models can be carried on
only under condition that the typical macroscopic wavelength is sufficiently large
when compared to the period lengths (low-frequency wave propagation problems).

The aim of this contribution is twofold. First, we outline the aforementioned
new modelling technique. Second, we illustrate the results on the example of
a non-stationary heat transfer process in a composite nonhomogeneous medium
with a periodic structure. For the sake of simplicity this illustration is restricted to
the linear problem and a rigid conductor. In order to investigate the wave propaga-
tion phenomena the Cattaneo-type model of the heat transfer is taken as the physi-
cal basis of the analysis, cf. [27]. Obviously, the general procedure outlined below
can be also applied to the macroscopic modelling of an arbitrary micro-periodic
material system.
Denotations. Throughout the paper super- and subscripts a, b run over 1,2,...,«.
Subscripts A, B run over 0,1,2,...,TV unless otherwise stated. Superscript e takes the
values !,...,£".

1. Preliminaries

To make this paper self-consistent we recall some preliminary concepts which
have been introduced in [18, 19]. Let (dh d2, d3) be the vector basis in the physical
space E3 and denote by A the Bravais lattice in E3 given by

A := {z e E3: z = Tftdj + 7;2d2 + 773d3, rja = Q,±\,±2,...,a = 1,2,3}

Let A be a polyhedron with a centre at point z = 0 such that for every x E 5A and
some da there is either x + da E <9A or x - da E <9A but not both. Subsequently for
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every subset H in E we use the denotation S(z):= z + H and for every p e A we

denote p(z) := z + p. Hence H(O) = S, p(o) = p .
A simplicial division of E3 wil l be called A-periodic if it implies a simplicial

subdivision of every A(Z), z e A, into simplexes Te( z} = z + Te , e = l,...,E. Let

stand for the smallest set of vertexes in A so that (Jp(z), z E A, is a set of all

vertexes of the given simplicial division of E3. Denoting d0 =0 we shall also in-

troduce the system of vectors AA, A = 0,1,..., ,̂ where N > 3, so that every vertex

in A can be uniquely represented in the form PQ +d^ . Setting

we define p^ :=  p$ +dA, for every (a^Ajel . It follows that p^ : (a,A)&I is

a set of all vertexes in A and every simplex T in A can be given by

Te = P^PsPcPD f°r some (a,A\...,(d,D)t I . We shall also denote:

It means that p^ is a vertex of Te if f (a, A) e Ie .

For an arbitrary real valued function /(•) defined on A we introduce finite differ-
ences

For A = 0 the above formulae reduce to A0/(z) = A0/(z) = 0 .

In the subsequent analysis the lengths la = da| wil l represent the periods of inho-

mogeneity of a material solid medium and the polyhedron A wil l be interpreted as
the periodicity cell. It wil l be assumed that the periodic medium has piecewise
constant properties and every simplex T can be treated, with a sufficient accuracy,
as homogeneous. We shall also define h = max\diamTl,...,diamTe\e

diamTe is a diameter of Te . It has to be remembered that the A-periodic
simplicial division of E3 is uniquely determined by a pertinent simplicial sub-
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4. Concluding remarks

At the end of the paper we summarize some new results and informations on
the mathematical modelling of non stationary processes in micro periodic material
system. The proposed line of modelling is based on the concept of what was called
the local variable and hence the resulting models are referred to as the local
variable models.
1° In order to investigate non-stationary processes in thermomechanics of micro-

periodic material systems (composite solids and lattice structures) two new
mathematical models of these systems have been proposed. The discrete local
variable model, represented by the finite difference equations (6), makes it pos-
sible to describe wave propagation phenomena in which a typical wavelength of
temperature-deformation pattern is of an order of the periods of inhomogeneity
(high-frequency wave propagation). The scope of applications of the local vari-
able model, with governing equations (11), is restricted to the analysis of
low-frequency wave propagation problems in which the typical wavelength of
a macroscopic deformation-temperature pattern is large when compared to the
periods of inhomogeneity.

2° The discrete local variable models can be formulated on different levels of accu-
racy which depends on the mesh parameter h. So far, the direct applications of
these models have been confined to the analysis of some simple special prob-
lems related to the wave propagation in periodic lattice-type structures and
composite materials [19, 20, 23]. However, the main role of the discrete local
variable models is that they constitute the background for the formulation of
new continuum models. The formal passage from discrete to continuum models
takes into account the fact that the discrete models, away from the solid bounda-
ries, are represented by the finite difference equations.

3° The local variable continuum models can be used only to the analysis of low
frequency wave propagation problems. These models have been successfully
applied to investigations of some special problems of heat conduction and elas-
todynamic behaviour of periodic materials and structures [20, 23],

4° It was shown by the direct analysis of some special wave propagation problems
that for a sufficiently small wave number the solutions derived on the basis
of the continuum local variable models nearly coincide with those resulting
from the discrete local variable models [23].

5° In contrast to homogenization, the proposed local variable continuum models
describe the effect of the microstructure size on the overall behaviour of
a periodic medium. Hence these models can be successfully applied to the dis-
persion analysis in micro-periodic elastic media. The main difference between
the local variable continuum models and models based on tolerance averaging is
that the former can be formulated on different levels of accuracy determined
by the mesh parameter h.

6° So far, the applications of both discrete and continuum models have been
restricted to the linear problems. However, equations (6) and (11) representing
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the above models also describe non linear problems provided that these prob-
lems can be derived from the principle of stationary action.

7° The main drawback of the proposed approach to the modelling of micro-periodic
material systems lies in a large number of local variables which may be neces-
sary in order to obtain the proper description of the problem under considera-
tion. This situation takes place in many problems met in engineering and solid
state physics. Thus, the crucial problem in applying local variables lies in the
development of computational methods which may reduce the number of un-
knowns. This can be done, for example, by taking into account the presence of
the small parameter (microstructure length) in the local variable model equa-
tions, cf. [15].
For particulars related to the application of the local variable models the reader

is referred to [18-20, 23] and to forthcoming papers on this subject. So far, the
obtained results in formulation and applications of local variable models, outlined
in this report, constitute only the first step in investigations of periodic media,
which has to be verified, confirmed and supplemented by subsequent researches on
this field.

Appendix

The heat transfer in a rigid conductor is described by the energy balance law
and heat transfer constitutive equation. Denoting by q the heat flux vector, by k and
c the modulus of thermal conductivity (for an isotropic material) and the specific
heat (per unit volume), respectively, by /the heat generation and by r the relaxa-
tion time (in the Cattaneo sense), the aforementioned equations have the well
known form:

which leads to the Cattaneo-type heat transfer equation

(Al )

For r= 0 equation (Al ) reduces to the well known Fourier heat transfer equation.
In this Appendix we are going to show that the above equation (as well as the
Fourier heat transfer equation) can be obtained from the principle of stationary
action. To this end we introduce a modified temperature field

,9 = 6>exp̂  (A2)
IT

and introduce the action functional
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