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Abstract. The Mellin transform method is applied to fractional differential equations with 

a right-sided derivative and variable potential. After solving the intermediate difference 

equation we arrive at the general solution of the problem in the form of a Meijer-G-

function series. Using the symmetry properties of fractional derivatives we transform it 

into a general solution for an analogous equation with the left-sided Riemann-Liouville 

derivative. Two examples are studied in detail and an explicit form of component solutions 

is given.

Introduction

Fractional calculus, involving derivatives and integrals of non-integer order, is 

now an integral part of mathematical modelling methods. Since its success in de-

scription of anomalous diffusion [1-3], non-integer order calculus, both in one and 

multidimensional space, it has become an important tool in many areas of physics, 

mechanics, chemistry, engineering, finances and bioengineering (see monographs [4-

7] and the references therein).

In applications of fractional calculus, a new class of integral-differential equa-

tions has been developed. They include integrals and derivatives of non-integer order 

and in general variable coefficients. Solutions have been studied for two decades [8-

10] and the methods of solving include fixed point theorems, integral transform 

methods as well as operational methods based on properties of new classes of spe-

cial functions. Still, some fractional differential equations, including Euler-Lagrange 

equations of fractional mechanics, remain an open problem.

In this paper we test the Mellin transform method for fractional differential equa-

tions with the right-sided derivative and variable potential - t
�
. The main motivation 

to study this class of equations is the fact that the solutions are known in literature 

only for its analogue with the left-sided derivative [10]. Kilbas and Saigo solved 

such an equation using the Banach theorem on a fixed point, Klimek and Dziem-

bowski in [11] proposed to apply the Mellin transform. This method seems more 

suitable for equations with right-sided operators as in this case, fixed point theorems 

yield only the existence and uniqueness of solutions. Attempts to calculate the exact 
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form of solutions by means of straightforward integration did not produce an explicit

and closed form of solution.

The application of the Mellin transform was also earlier proposed in solving pro-

cedure for some equations with a fractional differential operator of a variational type 

[12, 13]. We shall obtain the solutions in an analogous form in the present article. 

Using the symmetry properties of fractional derivatives with respect to reflection in 

a finite time interval we shall solve an equation with the left-sided derivative and 

potential (b-t)
�. Two examples are studied in Sections 3.1 and 3.2. In the case of 

constant potential � = 0 the discussed equation becomes an eigenfunction equation 

for the right-sided derivative and its solution is a linear combination of generalized 

Mittag-Lefller functions [10]. In the second example we assume � = –�/2 and using 

the reduction property for Meijer G-functions we obtain a simple form of solution.

The paper is organized as follows: Section 1 contains necessary and relevant 

definitions and formulas from fractional calculus, in Section 2 we include the defini-

tion and properties of the Mellin transform. The main results are enclosed in Section 

3 - in Propositions 3.1 and 3.3. The procedure of solving the equation is explained in 

detail and two examples of application are discussed.

1. Fractional integrals and derivatives

We shall recall the definitions of right-sided fractional operators [10, 14]. The 

following formulas describe fractional integrals for order � fulfilling condition

Re(�) > 0:
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The first of the above integrals is defined in a finite time interval and it is called 

a Riemann-Liouville right-sided integral. The second formula describes a right-sided 

integral defined on the real halfaxis, namely it is a Liouville integral.

Using the above fractional integrals we define the following fractional derivatives
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where  Re(�) > 0 and [Re(�)] = n-1.

Operator 
�
�bD is correctly determined in a finite time interval and it is known as 

a right-sided Riemann-Liouville derivative. Derivative 
�
�D acts on functions defined 

on the real halfaxis and it is called a right-sided Liouville derivative.

The following formulas present some results of fractional integration and  diffe-

rentiation for power functions:
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In what follows we also apply the composition rule for fractional derivatives and 

integrals of the same order. When ),,0(and0)Re( 1 bLf ��� the following formu-

la

� � )()( tftfID bb ���
��

(9)

is valid almost everywhere in interval [0,b]. In the case when 1)Re( �� the above 

composition rule holds at any point ].,0[ bt �

2. Mellin transform and its properties

Let us recall the definition of the Mellin transform (here s is a complex variable 

and compare monograph [15]):
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Similarly to the Laplace and Fourier integral transforms the Mellin transform also 

has its convolution defined by formula
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Acting on the Mellin convolution of two functions, the Mellin transform yields the 

product of transforms of respective functions:

� �� � � �� � � �� �sgsfsgf MMM ��� (12)

The following two properties shall be applied to solving fractional differential equa-

tion (15). The first formula describes shifting property

� �� � � �� ��� �� stfstft )()( MM (13)

The Mellin transform is known for left- and right-sided fractional operators acting 

on function f. Here we quote the formula for the right-sided Liouville integral, which 

we shall apply in our calculations in Section 3 [10]:
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3. Fractional differential equation with right-sided Riemann-Liouville

derivative and variable potential

Let us consider the following fractional differential equation in a finite time inter-

val

� � � �bttftDb ,0,0)( ����
�� � (15)

We shall extend this equation to the real positive halfaxis. To this aim we rewrite 

solution f in the following form

���� RttHtftf )()(:)(0

where we denote �H(t): = H(t) – H(t–b) with H - being the Heaviside’s function.

We notice that function f0 vanishes outside interval [0,b] and coincides with solution

f inside time interval [0,b]. Hence we replace equation (15) with an equation in the 

form of

� � 0)(0 ��� tftDb
�� � (16)

The above equation can be transformed to its equivalent integral form using compo-

sition rule (9). Thus, we shall obtain function f0, solving integral equation of order �:

� � )()(1 0 tftftI st
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where function  f�
st

is an arbitrary stationary function of the right-sided Riemann-

-Liouville derivative, given by formula

� � )()(
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Let us note that the following two fractional integrals coincide on positive halfaxis 

for solution f0

)()( 00 tfItfI b

��
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and owing to this property we can rewrite equation (17) as an equation with 

a Liouville fractional integral
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�
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The next step is the application of the Mellin transform. The result is a difference 

equation for the Mellin transform of solution � �0fM :
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where ���T is a translation operator acting on functions as follows: ���T h(s) =

= h(�����) and we  assume Re(���) > 0. Function g is given as the quotient of 

Euler Gamma functions:
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The above difference equation is solved by the following series absolutely conver-

gent in complex halfplane Re(s) > 0 when Re(���) > 0:
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In order to derive an exact and explicit form of solution 0f we should now invert 

the above Mellin transform. Let us note that for each m the last term is simply the 

Mellin transform of the stationary function given in formula (18). The main difficul-

ty is therefore the inverse Mellin transform for the corresponding products of the g-

functions. However, they can be identified as kernels G of the Mellin transforms 

defining the Meijer G-functions (compare formula (1.1.1) from the monograph by 

Kilbas and Saigo [10]) for each natural number m:
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where the vectors are defined as follows
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Let us note that formula (21), describing the Mellin transform of solution f0, holds in 

complex halfplane Re(s) > 0. Hence, inverting this transform we should use vertical 

contour L���. According to Theorem 1.1 and formulas (1.1.7-1.1.10) from mono-

graph [16] we calculate parameters

�% ma ����� 00 *

and obtain  the following condition
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Applying formula (12) for convolution and formula (22) we obtain the solution 

given as the series of Meijer G-functions in the convolution with the stationary func-

tion multiplied by a power function
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In order to calculate the Mellin convolutions we apply the integration formula for 

Fox H-functions rewritten for a subset of Meijer G-functions (compare Theorem 2.7 

from the monograph by Kilbas and Saigo [16]). ���������	�
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is fulfilled, then the following general formula for the integration of Meijer 

G-functions is valid
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As assumption (25) is fulfilled for each element of series (24), we apply the above

formula for integration and we calculate the explicit form of all Mellin convolutions 

in series (24)
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where the vectors defining the Meijer G-functions look as follows
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The above integration formula yields the Mellin convolution corresponding to the

(b-t)�-k
component of the  stationary function. Using this formula we arrive at the 

component series of the solution connected to the respective component of the statio-

nary function:
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The general solution of equations (19) and (15) is an arbitrary linear combination of 

the above series
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The presented considerations can be summarized in the following Proposition.

Proposition 3.1

Let � �nn ,1)Re( ��� and Re (�+�) > 0, Re(�) >1/2. Then equation

� � 0)( ��� tftDb
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has in finite time interval [0,b] a general solution in the form of a  linear combi-

nation of solutions kf0

)()( 0
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0 tfctf k
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where ck are arbitrary real coefficients and components 
kf0 are the following 

series of Meijer G-functions
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with defining vectors given by formulas (26, 27).

Remark 3.2

Let us note that the Riemann-Liouville derivatives obey in a finite time interval the 

following formula [14]:

Q
�
�bD =

�
�0D Q (30)

where operator Q is a reflection operator in interval [0,b] acting as follows on func-

tions determined in this interval Qh(t): = h(b-t) and 
�
�0D is the left-sided Riemann-

Liouville derivative [10, 14].

Let us observe that this remark yields the following Proposition valid.

Proposition 3.3

Let � �nn ,1)Re( ��� and Re (�+�) > 0, Re(�) >1/2. Then equation
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has in finite time interval [0,b] a  general solution in the form of a linear combi-

nation of solutions kf0
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where ck are arbitrary real coefficients and components 
kf0 are the following 

series of Meijer G-functions
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with defining vectors given by formulas (26, 27).

3.1. Example: solution of equation (15) for ��� ��

Let us consider an example for � = 0. Equation (15) becomes an eigenvalue eq-

ua��
��������
������������
������

� � � �bttfDb ,00)(0 ���� ��

The Meijer G-functions appearing in formulas (28, 29) for the general solution can 

be transformed using their reduction property (see Property 2.2 in monograph [16]). 

We conclude that in this case they can be identified with the power functions:
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Hence component solutions 
kf0 for k = 1,…,n are of the form
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�
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where functions E are the generalized Mittag-Lefller functions (see their definition 

and properties in monograph [10]).

3.2. Example: solution of equation (15) for 2/��� ��

As a next example we solve an equation for �	= –�/2. For this value of parameter 

�, equation (15) has the following form:

� � � �bttftDb ,00)(0
2/ ��� �

�
�� �

Similarly to the previous example we can also apply the reduction formula and 

obtain for m > 0 the following simple formulas for Meijer G-functions
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Component solution 
kf0 for k =1,…,n looks as follows
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Conclusions

In the paper we derived the general solution of two fractional differential equa-

tions with variable potential. The developed method of solving includes:

- Mellin transform,

- solution of  intermediate difference equation,

- inversion of  Mellin transform with application of  Meijer G-functions theory,

- application of reflection operator in the finite time interval.

Using the above procedure we obtained the general solution of the equation with 

the right-sided Riemann-Liouville derivative in the form of a Meijer 

G-function series. Afterwards, by means of the reflection operator, this series also 

yields general solution of an equation with a left-sided fractional derivative.

The obtained solutions will be applied in a subsequent paper in solving the general-

ized fractional equations in the form of

L [t
–� �

�bD ] f(t) = 0

L [(b–t)–� �
�0D ] f(t) = 0

where L is an arbitrary polynomial function.

Concluding, the Mellin transform method seems to be a more general tool than 

the Laplace and Fourier transforms widely applied in fractional differential equa-

tions. Although it yields solutions in a complicated form and their properties are still 

to be investigated, the Mellin transform allows us to solve equations with 

operators of a variational type [17]-[19].
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